Spelling suggestions: "subject:"turbocharger burbine"" "subject:"turbocharger aturbine""
1 |
Šroubové spojení turbínového kola s hřídelem turbodmychadla / Design of thread connection of turbocharger turbine wheel and rotor shaftOboňa, Matúš January 2020 (has links)
This diploma thesis is focused on the concept of threaded connection of the turbine wheel and shaft. At the beginning are described current welding methods of the turbine wheel and shaft connections as well as methods of the compressor wheel and shaft connections. Four possible concepts were designed and evaluated, and the best concept was chosen. For this concept was calculated tightening torque and concept was evaluated in terms of turbocharger operating conditions.
|
2 |
INVESTIGATION OF DIFFERENT DATA DRIVEN APPROACHES FOR MODELING ENGINEERED SYSTEMSShrenik Vijaykumar Zinage (14212484) 05 December 2022 (has links)
<p>Every engineered system behaves slightly differently because of manufacturing and operational uncertainties. The ability to build system-specific predictive models that adapt to manufactured systems, also known as digital twins, opens up many possibilities for reducing operating and maintenance costs. Nonlinear dynamical systems with unknown governing equations and states characterize many engineered systems. As a result, learning their dynamics from data has become both the current research area and one of the biggest challenges. In this thesis, we do an investigation of different data driven approaches for modeling various engineered systems. Firstly, we develop a model to predict the transient and steady-state behavior of a turbocharger turbine using the Koopman operator which can be helpful for modelling, analysis and control design. Our approach is as follows. We use experimental data from a Cummins heavy-duty diesel engine to develop a turbine model using Extended Dynamic Mode Decomposition (EDMD), which approximates the action of the Koopman operator on a finite-dimensional subspace of the space of observables. The results demonstrate comparable performance with a tuned nonlinear autoregressive network with an exogenous input (NARX) model widely used in the literature. The performance of these two models is analyzed based on their ability to predict turbine transient and steady-state behavior. Furthermore, we assess the ability of liquid time-constant (LTC) networks to learn the dynamics of various oscillatory systems using noisy data. In this study, we analyze and compare the performance of the LTC network with various commonly used recurrent neural network (RNN) architectures like long short-term memory (LSTM) network, and gated recurrent units (GRU). Our approach is as follows. We first systematically generate synthetic data by exciting the system of interest with a band-limited white noise and simulating it using a forward Euler discretization scheme. After the output has been simulated, we then corrupt it with different levels of noise to replicate a practically measured signal and train the RNN architectures with that corrupted output. The model is then tested on various types of forcing excitations to analyze the robustness of these networks in capturing different behaviors exhibited by the system. We also analyze the ability of these networks to capture the resonance effect for various parameter settings. Case studies discussing standard benchmark oscillatory systems (i.e., spring-mass-damper (S-M-D) system, single degree of freedom (DOF) Bouc-Wen oscillator, and forced Van der pol oscillator) are used to test the performance of these methodologies. The results reveal that the LTC network showed better performance in modeling the S-M-D system and 1-DOF Bouc-Wen oscillator as compared to an LSTM network but was outperformed by the GRU network. None of the networks were able to model the forced Van der pol oscillator with a reasonable accuracy. Since the GRU network outperformed other networks in terms of the computational time and the model accuracy for most of the scenarios, we applied it to a real world experimental dataset (i.e. turbocharger turbine dynamics) to compare it against the EDMD and NARX model. The results showed better performance of the GRU network in modeling the transient behaviours of the turbine. However, it failed to predict the turbine outlet temperature with a reasonable accuracy in most of the regions for the steady state dataset. As future work, we plan to consider training the GRU network with a data sampling frequency of 100 Hz for a fair comparison with the NARX and the Koopman approach.</p>
|
3 |
Electric turbocharger for fuel cells - IHI´s contribution to sustainable mobilityFilsinger, Dietmar, Ehrhard, Jan, Kuwata, Gen, Ikeya, Nobuyuki 27 May 2022 (has links)
Towards a carbon free society the IHI group is committed to provide products, technologies and services in line with ecological and economical sustainability. Storage and transportation of green energy are major challenges related to the global transition from fossil fuels towards 100% renewables. IHI is active in various areas ranging from SOFC technology via ammonia combustion to smart community demonstrator projects. With respect to mobility hydrogen fuel cell technology is identified as one major pillar for CO2-neutral vehicular propulsion – especially for higher payloads and extended driving distances. Since more than 20 years IHI is providing charging systems for stationary fuel cell applications and since 2004 also for mobile fuel cell applications.
IHI´s oil free turbocharger for fuel cell applications is providing state-of-the-art boosting technology to enable emission free propulsion systems. It comprises a turbine, a compressor and, on the same shaft, an electric motor as well as air foil bearings to support the rotor. The turbine utilizes the enthalpy from the stack exhaust to lower the required electric power for driving the compressor. It can provide up to 40% of the needed compressor power and hence substantially increases the system efficiency. Compressor and turbine are optimized for operating conditions in fuel cell systems regarding specified airflow and pressure ratio, which is typically in the range of 3.0.
|
4 |
Using AI to improve the effectiveness of turbine performance dataShreyas Sudarshan Supe (17552379) 06 December 2023 (has links)
<p dir="ltr">For turbocharged engine simulation analysis, manufacturer-provided data are typically used to predict the mass flow and efficiency of the turbine. To create a turbine map, physical tests are performed in labs at various turbine speeds and expansion ratios. These tests can be very expensive and time-consuming. Current testing methods can have limitations that result in errors in the turbine map. As such, only a modest set of data can be generated, all of which have to be interpolated and extrapolated to create a smooth surface that can then be used for simulation analysis.</p><p><br></p><p dir="ltr">The current method used by the manufacturer is a physics-informed polynomial regression model that depends on the Blade Speed Ratio (BSR ) in the polynomial function to model the efficiency and MFP. This method is memory-consuming and provides a lower-than-desired accuracy. This model is decades old and must be updated with new state-of-the-art Machine Learning models to be more competitive. Currently, CTT is facing up to +/-2% error in most turbine maps for efficiency and MFP and the aim is to decrease the error to 0.5% while interpolating the data points in the available region. The current model also extrapolates data to regions where experimental data cannot be measured. Physical tests cannot validate this extrapolation and can only be evaluated using CFD analysis.</p><p><br></p><p dir="ltr">The thesis focuses on investigating different AI techniques to increase the accuracy of the model for interpolation and evaluating the models for extrapolation. The data was made available by CTT. The available data consisted of various turbine parameters including ER, turbine speeds, efficiency, and MFP which were considered significant in turbine modeling. The AI models developed contained the above 4 parameters where ER and turbine speeds are predictors and, efficiency and MFP are the response. Multiple supervised ML models such as SVM, GPR, LMANN, BRANN, and GBPNN were developed and evaluated. From the above 5 ML models, BRANN performed the best achieving an error of 0.5% across multiple turbines for efficiency and MFP. The same model was used to demonstrate extrapolation, where the model gave unreliable predictions. Additional data points were inputted in the training data set at the far end of the testing regions which greatly increased the overall look of the map.</p><p><br></p><p dir="ltr">An additional contribution presented here is to completely predict an expansion ratio line and evaluate with CTT test data points where the model performed with an accuracy of over 95%. Since physical testing in a lab is expensive and time-consuming, another goal of the project was to reduce the number of data points provided for ANN model training. Furthermore, strategically reducing the data points is of utmost importance as some data points play a major role in the training of ANN and can greatly affect the model's overall accuracy. Up to 50% of the data points were removed for training inputs and it was found that BRANN was able to predict a satisfactory turbine map while reducing 20% of the overall data points at various regions.</p>
|
Page generated in 0.0676 seconds