• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Free surface dynamics in shallow turbulent flows

Nichols, Andrew January 2013 (has links)
This study aimed to understand the processes that govern free surface behaviour in depth-limited turbulent flows. Experimental data has shown that the turbulence properties at a point near the free surface relate directly to the properties of the free surface pattern. This would suggest a direct linkage between the free surface and the underlying turbulence field, but this cannot be true since the free surface pattern is strongly dynamic while the sub-surface turbulence field is relatively persistent. An oscillatory spatial correlation function was derived which explains the de-linkage, showing that the turbulence-generated surface pattern periodically inverts as it advects downstream. A model was developed, which shows that the observed free surfaces can be considered as an ensemble of overlapping but behaviourally independent oscillons. These are shown to influence a zone of fluid beneath the surface and invert at a frequency which is a function of the root-mean-square roughness height of the free surface. The spatial frequency of free surface oscillation relates strongly to the spatial frequency of turbulent structures, suggesting that the oscillon motion may form the trigger for near-bed bursting events. Given these relationships, it is proposed that measurement of the free surface behaviour may allow remote measurement of flow conditions. An acoustic wave probe was developed, which is able to remotely recover the key features of the water surface pattern. An array of such probes is proposed for the accurate measurement of temporal and spatial properties of turbulent free surfaces and hence the underlying bulk flow conditions.
2

SIZE, DYNAMICS AND CONSEQUENCES OF LARGE-SCALE HORIZONTAL COHERENT STRUCTURES IN OPEN-CHANNEL FLOWS: AN EXPERIMENTAL STUDY

Ahmari, Habib 20 September 2013 (has links)
This thesis concerns the occurrence of the large-scale bed and plan forms known as alternate bars and meandering, and the internal structures of the flow associated with their formation. The work is to be viewed as an extension of previous work by da Silva (1991), Yalin (1992), and Yalin and da Silva (2001). As a first step in this work, the criteria for occurrence of alternate bars and meandering of Yalin and da Silva (2001) is re-considered in view of additional field and laboratory data from the recent literature and data resulting from two series of experimental runs carried out in two sediment transport flumes. This leads to a number of modifications of the boundary-lines in the related existence-region diagram of Yalin and da Silva. The size of the largest horizontal coherent structures (HCS’s) of an alternate bar inducing flow was then investigated experimentally on the basis of three series of flow velocity measurements. These were carried out in a 21m-long, 1m-wide straight channel, conveying a 4cm-deep flow. The bed consisted of a silica sand having a grain size of 2mm; its surface was flat. The measurements were carried out using a Sontek 2D Micro ADV. The horizontal burst length was found to be between five and seven times the flow width. The effect of the HCS’s on the mean flow was also investigated. A slight internal meandering of the flow caused by the superimposition of burst-sequences on the mean flow was clearly detectable. Finally, with the aid of three new series of measurements in the same channel, an attempt was made to penetrate the dynamics and life-cycle of the HCS’s. For this purpose, quadrant analysis was used; the cross-sectional distribution of relevant statistical turbulence-related parameters was investigated; and cross-correlations of flow velocity along the flow depth and across the channel were performed. The analysis indicates that the HCS’s originate near the channel banks, with the location of ejections and sweeps being anti-symmetrically arranged with regard to the channel centreline, and then evolve so as to occupy the entire depth of the water and the entire width of the channel. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2010-03-09 10:20:53.596
3

Free surface dynamics in shallow turbulent flows.

Nichols, Andrew January 2013 (has links)
This study aimed to understand the processes that govern free surface behaviour in depth-limited turbulent flows. Experimental data has shown that the turbulence properties at a point near the free surface relate directly to the properties of the free surface pattern. This would suggest a direct linkage between the free surface and the underlying turbulence field, but this cannot be true since the free surface pattern is strongly dynamic while the sub-surface turbulence field is relatively persistent. An oscillatory spatial correlation function was derived which explains the de-linkage, showing that the turbulence-generated surface pattern periodically inverts as it advects downstream. A model was developed, which shows that the observed free surfaces can be considered as an ensemble of overlapping but behaviourally independent oscillons. These are shown to influence a zone of fluid beneath the surface and invert at a frequency which is a function of the root-mean-square roughness height of the free surface. The spatial frequency of free surface oscillation relates strongly to the spatial frequency of turbulent structures, suggesting that the oscillon motion may form the trigger for near-bed bursting events. Given these relationships, it is proposed that measurement of the free surface behaviour may allow remote measurement of flow conditions. An acoustic wave probe was developed, which is able to remotely recover the key features of the water surface pattern. An array of such probes is proposed for the accurate measurement of temporal and spatial properties of turbulent free surfaces and hence the underlying bulk flow conditions.

Page generated in 0.0786 seconds