• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 212
  • 128
  • 72
  • 16
  • 13
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1100
  • 1100
  • 793
  • 193
  • 161
  • 151
  • 141
  • 127
  • 121
  • 113
  • 108
  • 100
  • 98
  • 95
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

An integral analysis of two-phase annularmist condensing flows

Berry, Maurice Robert 12 June 2010 (has links)
In this investigation of the two-phase, annular-mist flow of a condensing vapor, the following significant conclusions are drawn. The conclusions are based on the numerical results obtained from the theoretical analysis. Where appropriate, recommendations for future studies are included: 1. The analytical model accurately predicts the condenser length necessary for complete condensation and, with a reasonable degree of accuracy, the dynamic quality, heat transfer characteristics, and static pressure distribution. 2. An integral analysis is presented for which the assumed velocity and enthalpy profiles are the power-law type. For the range of temperatures and pressures encountered in this investigation, varying the profile shapes has a negligible effect on the dynamic quality and static pressure distributions at all except high vapor velocities. 3. The analysis accounts for the slip between the entrained particles and the vapor in the gas core. A constant entrainment slip ratio (SE) is assumed. Reducing the ratio below unity has an effect of the static pressure drop. The effect, however, is comparatively small. 4. Due to the lack of entrainment flow rate data available for two-phase, annular-mist, condensing flows, a variable entrainment correlation is included in the analysis. / Ph. D.
152

Spatio-temporal Characteristics of a Spray from a Liquid Jet in Crossflow

Thawley, Scott 23 March 2006 (has links)
A liquid jet in a crossflow is often used to as a fuel injection method for combustion systems. Parameters such as penetration and core trajectory are used as characterization for the spray and specification of design criteria for combustor geometry. In addition to penetration and core trajectory, mapping the mass flux in space and time is an important part of modeling evaporation and global equivalence ratio throughout the combustor. Accurate prediction of these spray characteristics allows for a stable and robust combustor design. The break up of a liquid jet in a crossflow is an extremely complex phenomenon in both combination of mechanisms and variability of possible paths progressing from a liquid column to a distribution of individual droplets. In each region separate governing forces control the behavior of the liquid phase. Accordingly, different measurement techniques and different factors must be considered in each region. Presented are the results of measurements using Phase Doppler Analyzer, PDA, and a time resolved, digital, particle imaging velocimetry system, TRDPIV. The measurements include instantaneous and time-averaged liquid phase velocity fields, spray penetration and core location in the near field and far field of the spray resulting from the liquid jet breakup. With the TRDPIV system, the holistic properties of all three segments of a jet in crossflow were acquired with a single measurement. This allowed for comparison of system characteristics across not only individual pieces of one segment of the jet, for example PDA measurements of many droplets in one point of the far field spray, but characteristics across the entire system including the liquid column, near field spray, and far field spray simultaneously in a fashion that allowed for direct comparison between the different segments. / Master of Science
153

The experimental and numerical approach of two-phase flows by wall jets on rough beds in open channel flow

Ghoma, Mohamed Ibrahem, Hussain, Khalid, Tait, Simon J. January 2014 (has links)
Yes / This paper presents the results of investigations carried out to study the effect of horizontal wall jets on a fixed rough bed in an open channel. The study used both numerical and experimental approaches. The numerical and experimental studies are compared for validation. The main objective of this study is to understand the effect of wall jets on a horizontal fixed rough bed in an open channel. The experimental study investigated the effect of wall jets on a fixed horizontal bed, with a known roughness in an open channel flume. A sid-looking Acoustic Doppler Velocimetry (ADV) was used to measure the velocity profile of the flow at different flow zones. The wave monitor was used to measure the free surface during the experiments. Computational fluid dynamics CFD simulations were conducted in a rectangular channel to compare with the laboratory tests using the volume of fluid VOF multiphase method and K- ࢿ model. The two phase (water and air) was used in this study. Computer simulations for the model were used to predict the fluid horizontal velocity (u) revealing the characteristics of the wall jet over different flow zones (developing, fully developed and recovering zones). The results showed that the velocity profiles distribution in the stream wise direction in the channel were reasonable. The reverse velocity was close to the wall jet and the maximum reverse velocity was observed near the water surface. Also the results showed that the depression was close to the wall jet. The agreement between the results obtained from the numerical and the experimental data were reasonable.
154

Two phase heat transfer in a sprial evaporative heat exchanger

Recio, Jose M. 01 January 2004 (has links)
No description available.
155

Design and analysis of a compact two phase cooling system for a laptop computer

Ali, Adya Alisha 13 July 2004 (has links)
Technological advancement, as well as consumer demands, has motivated the miniaturization of electronic/mechanical systems and increase of device power and performance. The notebook computer is not an exception, and innovative thermal management solutions must be employed to compensate for the increased heat dissipation in the space-constrained enclosures. The majority of current cooling systems in laptop computers rely on heat pipes attached to a remote heat exchanger with micro-fans providing forced convection to reject heat to the ambient, however this technique can not accommodate the increasing heat fluxes in the confined laptop enclosure. In this study, a two-phase closed loop cooling system is designed and tested for a laptop computer. The cooling system consists of an evaporator structure containing boiling structures connected to a compact condenser with mini fans providing external forced convection. A pump is also incorporated to assist the return of the condensate back to the evaporator. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, initial system pressure, and pump flow rate on the thermal performance of the closed loop. Experimental data shows the optimum parametric values which can dissipate 25 W of chip power with a chip temperature maintained at 95C. Numerical analysis provides additional data to further enhance the heat dissipation from the external air-cooled side of the condenser by studying the effects of ventilation and air flow rate across the system. Thermal management of mobile systems must be considered during the early design phases, and this research shows the feasibility of implementing of a two-phase cooling system to dissipate 25 W in a laptop computer.
156

Sub-grid Combustion Modeling for Compressible Two-Phase Flows

Sankaran, Vaidyanathan 24 November 2003 (has links)
A generic formulation for modeling the sub-grid combustion in compressible, high Reynolds number, two-phase, reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of the complex flow-fields such as those encountered in many combustion systems. In LES-LEM, all the physical processes such as molecular diffusion, small and large scale turbulent convection and chemical reaction are modeled separately but concurrently at their respective time scales. This multi-scale phenomena is solved using a two-scale numerical approach, wherein molecular diffusion, small scale turbulent convection and chemical reaction are grouped as small scale processes and the convection at the (LES grid) resolved scales are deemed as the large scale processes. Small-scale processes are solved using a hybrid finite-difference Monte-carlo type approach in a one-dimensional domain. Large-scale advection on the three-dimensional LES grid is modeled in a Lagrangian manner that conserves mass. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Power Systems' combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Comparison of the energy growth in the fundamental and sub-harmonic mode in the presence and absence of the droplets shows excellent agreement with spectral DNS. Finally, to test the ability of the present two-phase LES-LEM in simulating partially premixed combustion, a LES of freely propagating partially premixed flame in a droplet-laden isotropic turbulent field is conducted. LES-LEM along with the spray models correctly captures the flame structure in the partially premixed flames. It was found that most of the fuel droplets completely vaporize before reaching the flame, and hence provides a continuous supply of reactants, which results in an intense reaction zone similar to a premixed flame. Some of the droplets that did not evaporate completely, traverse through the flame and vaporize suddenly in the post flame zone. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. Triple flame structure are also observed in the flow-field due to the equivalence ratio fluctuations.
157

The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.

Van der Walt, Stefan January 2012 (has links)
Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications. The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate the fluid and to desorb the refrigerant (ammonia) from the mixture. It is thus of paramount importance to ensure that the bubble pump is designed efficiently. Various bubble pump simulation models have been developed over the years, but it was found that none of the existing models served as a good basis for application-specific design. Most of the models constrained too many parameters from the outset which made the investigation of the effects of certain parameters on the bubble pump’s performance impossible. According to the research, no bubble pump model investigated the effect of such a wide variety of factors including tube diameter, heat flux, mass flux, generator heat input and system pressure on the bubble pump’s lift height. A simulation model for a bubble pump for integration with a solar-driven aqua-ammonia diffusion absorption cycle was developed. It serves as a versatile design model to optimise the bubble pump for a large variety of conditions as well as changes in parameters. It was achieved by constraining the bubble pump dimensions and parameters as little as possible. A unique feature of this model was the fact that the bubble pump tube was divided into segments of known quality which made the length of the pipe completely dependent on the flow inside the pipe. It also made the demarcation of the flow development inside the tube easier. The model attempted to incorporate the most appropriate correlations for pressurised two-phase aqua-ammonia flow. The most appropriate void fraction correlation was found to be Abstract The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump the Rouhani-Axelsson (Rouhani I) correlation. It was mainly due to its exclusive use of thermophysical properties and the vapour quality. The most appropriate heat transfer coefficient that predicted the most realistic wall temperature, was the correlation from Riviera and Best (1999) which was the only correlation found in the literature developed with aqua-ammonia in mind. It was found that the published correlation could not reproduce their experimental results, and a modification of their correlation was made after which the simulation model’s results correlated well with the experimental values of Riviera and Best (1999). The main goal of the simulation model was to determine the height that the bubble pump was capable of lifting at the slug to churn flow transition under various conditions. The effect of varying a variety of parameters on the bubble pump lift height was also investigated. The results from Shelton & White Stewart (2002) were compared to the outputs of the simulation model, and it was found that their constraining of the submergence ratio limited their outputs, and that their heat inputs under different conditions was a bit optimistic. The simulation model’s outputs correlated well at higher tube diameters with the results from Shelton & White Stewart (2002), but at the lower diameters which was used in their study it was impossible to compare data, since their diameters was already in mini flow and micro flow regions. The temperatures also correlated well, all within 2% of the results from Shelton & White Stewart (2002). It was found that there couldn’t be just one set of optimised conditions and values for the bubble pump, but that each cycle with differing specifications and operating conditions would yield a unique set of optimised parameters. It was for that reason very important not to constrain parameters beforehand without investigating its effect on the bubble pump first. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
158

The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.

Van der Walt, Stefan January 2012 (has links)
Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications. The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate the fluid and to desorb the refrigerant (ammonia) from the mixture. It is thus of paramount importance to ensure that the bubble pump is designed efficiently. Various bubble pump simulation models have been developed over the years, but it was found that none of the existing models served as a good basis for application-specific design. Most of the models constrained too many parameters from the outset which made the investigation of the effects of certain parameters on the bubble pump’s performance impossible. According to the research, no bubble pump model investigated the effect of such a wide variety of factors including tube diameter, heat flux, mass flux, generator heat input and system pressure on the bubble pump’s lift height. A simulation model for a bubble pump for integration with a solar-driven aqua-ammonia diffusion absorption cycle was developed. It serves as a versatile design model to optimise the bubble pump for a large variety of conditions as well as changes in parameters. It was achieved by constraining the bubble pump dimensions and parameters as little as possible. A unique feature of this model was the fact that the bubble pump tube was divided into segments of known quality which made the length of the pipe completely dependent on the flow inside the pipe. It also made the demarcation of the flow development inside the tube easier. The model attempted to incorporate the most appropriate correlations for pressurised two-phase aqua-ammonia flow. The most appropriate void fraction correlation was found to be Abstract The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump the Rouhani-Axelsson (Rouhani I) correlation. It was mainly due to its exclusive use of thermophysical properties and the vapour quality. The most appropriate heat transfer coefficient that predicted the most realistic wall temperature, was the correlation from Riviera and Best (1999) which was the only correlation found in the literature developed with aqua-ammonia in mind. It was found that the published correlation could not reproduce their experimental results, and a modification of their correlation was made after which the simulation model’s results correlated well with the experimental values of Riviera and Best (1999). The main goal of the simulation model was to determine the height that the bubble pump was capable of lifting at the slug to churn flow transition under various conditions. The effect of varying a variety of parameters on the bubble pump lift height was also investigated. The results from Shelton & White Stewart (2002) were compared to the outputs of the simulation model, and it was found that their constraining of the submergence ratio limited their outputs, and that their heat inputs under different conditions was a bit optimistic. The simulation model’s outputs correlated well at higher tube diameters with the results from Shelton & White Stewart (2002), but at the lower diameters which was used in their study it was impossible to compare data, since their diameters was already in mini flow and micro flow regions. The temperatures also correlated well, all within 2% of the results from Shelton & White Stewart (2002). It was found that there couldn’t be just one set of optimised conditions and values for the bubble pump, but that each cycle with differing specifications and operating conditions would yield a unique set of optimised parameters. It was for that reason very important not to constrain parameters beforehand without investigating its effect on the bubble pump first. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
159

Single-phase flow and flow boiling of water in rectangular metallic microchannels

Özdemir, Mehmed Rafet January 2016 (has links)
This experimental research aims at investigating the single-phase flow heat transfer and friction factor, flow boiling heat transfer and pressure drop, and flow visualisation in microchannels using de-ionized water. In the literature, many studies failed to explain the effect of aspect ratio on the single-phase and two-phase flow heat transfer rate and pressure drop. Because the channel aspect ratios and hydraulic diameters were varied together in those studies. Also, there is a discrepancy between past studies and the conventional theory for the flow boiling heat transfer characteristics. Accordingly, the objectives of this research can be listed as follows: (i) modifying the existing experimental facility to perform single-phase and two-phase flow heat transfer and pressure drop and two-phase flow pattern visualization experiments in microchannels, (ii) clarifying the fundamental aspects of flow boiling in micro passages, (iii) investigating the aspect ratio, heat flux, mass flux and vapour quality effects on flow patterns, heat transfer rate and pressure drop in single-phase and two-phase flow, (iv) comparing the obtained results with heat transfer and pressure drop correlations and flow pattern maps available in the literature. Consequently, the pre-existing experimental facility was modified in the current research by changing the pre-heaters, flowmeter and piping in order to achieve the goals of this study. Four copper rectangular microchannels were designed and manufactured. Three microchannel test sections having the same hydraulic diameter and length but different aspect ratios were investigated to reveal the effect of aspect ratio on the single-phase and two-phase flow heat transfer rate and pressure drop. The surface roughness of each microchannel was also examined. It was found that the surface roughnesses of all microchannels are similar. Moreover, an additional microchannel test section was used to examine the effect of heated length on the flow boiling heat transfer coefficient and pressure drop. The single-phase flow results demonstrated that the channel aspect ratio has no influence on the friction factor and heat transfer rate for the tested microchannels and experimental range. In the flow boiling experiments, bubbly, bubbly/slug, slug, churn and annular flow regimes were observed in the tested microchannels. The channel aspect ratio effect was found to be small on the observed flow patterns. The experimental flow patterns were predicted well by the flow pattern map proposed by Galvis and Culham (2012) except for the slug flow regime. The flow pattern maps of Sobierska et al. (2006) and Harirchian and Garimella (2009) reasonably predicted the experimental flow pattern data. The flow boiling heat transfer results showed that the prevailing heat transfer mechanism is nucleate boiling for the low and medium heat flux inputs. On the other hand, the dominant heat transfer mechanism is unclear at the high heat flux inputs while smaller aspect ratio microchannel has better heat transfer performance for low and medium heat flux inputs. However, at high heat flux inputs the channel aspect ratio effect was found to be insignificant on the flow boiling heat transfer coefficient. The experimental flow boiling heat transfer coefficient data were reasonably predicted by the correlations of Sun and Mishima (2009), Li and Wu (2010) and Mahmoud and Karayiannis (2011) from the literature. The flow boiling pressure drop characteristics were also examined in the tested microchannels. Outcome of the experiments consistently indicated a highly linear trend between the increasing flow boiling pressure drop and the heat and mass flux. Also, the flow boiling pressure drop increased with the increase in vapour quality. The effect of channel aspect ratio on the flow boiling pressure drop was also assessed. It was found that when the channel aspect ratio decreased, the flow boiling pressure drop increased. The experimental flow boiling pressure drop data were compared to correlations from the literature. Mishima and Hibiki (1996), Yu et al. (2002) and Zhang et al. (2010) correlations reasonably predicted the experimental flow boiling pressure drop results.
160

Studies of Horizontal Two-Phase Flow Using Electrical Capacitance Tomography and R-134a

Roman, Abdeel J. 20 December 2017 (has links)
No description available.

Page generated in 0.1158 seconds