• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 28
  • 17
  • 14
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 157
  • 157
  • 116
  • 66
  • 48
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural and functional characterization of the budding yeast Mus81-Mms4 complex

Fu, Yu 14 July 2003 (has links)
The Saccharomyces cerevisiae Mms4 and Mus81 proteins are required for repairing DNA alkylation damage, but not damage caused by ionizing radiations. Previous studies have demonstrated that Mms4 and Mus81 form a specific complex in vivo, which functions as an endonuclease specific for branched DNA molecules. <p> In an effort to further understand the role of the Mus81-Mms4 complex in vivo, the structural and functional characteristics of this complex were investigated in this study. The epistatic analysis revealed that RAD52 was epistatic to MMS4 with respect to killing by methyl methanesulfonate (MMS), suggesting that MMS4 is involved in the RAD52 dependent homologous recombinational repair pathway. However, the mms4 rad51, mms4 rad54 and mms4 rad50 double mutants showed more sensitivity to MMS than either corresponding single gene disruptant. Since Rad51 and Rad54 are required to form the Holliday junction during recombinational repair pathway, it is unlikely that the Mus81-Mms4 complex functions as a Holliday junction resolvase in vivo. <p> The role of MMS4 in DNA damage induced mutagenesis has been investigated. Deletion of MMS4 had no obvious effects on damage-induced basepair mutations, but increased frame-shift mutations by 3 fold when the yeast cells were treated with MMS. This suggests that the Mus81-Mms4 complex plays a role in limiting the damage-induced frame-shift mutagenesis. <p> Through a yeast two-hybrid assay, Mus81 and Mms4 have been demonstrated to form a stable and specific complex in vivo. This result is consistent with previous studies. To localize the domains of the Mms4 and Mus81 proteins involved in herterodimer formation, a series of deletion mutants were constructed for the yeast two-hybrid assay. The Mus81-binding domain of Mms4 was mapped to the extreme C-terminal region between amino acids 598-691. The Mms4-binding domain of Mus81 was mapped to a domain between amino acids 527-632. The results from co-immunoprecipitation experiment were consistent with those from the yeast two-hybrid assay. The Mms4-1 (Gly173Arg) protein was found to lose its interaction with Mus81, and this kind of amino acid substitution is very likely to alter the three-dimension structure of the protein. Thus we hypothesize that the three-dimensional structure is also important for Mms4 to interact with Mus81. <p> By studies on green fluorescent protein (GFP) fusion proteins and their subcellular localization, we demonstrated that Mms4 and Mus81 are nuclear proteins. When the putative nuclear localization sequence 1 (residues 244-263) in Mms4 was deleted, the truncated protein lost the ability to enter the nucleus. On the contrary, deletion of the putative nuclear localization sequence 2 (residues 539-555) had no effect on the localization of the protein. Furthermore, the nuclear localization of Mus81 was proven to be independent of its interaction with Mms4, and the N-terminal half of Mus81 is necessary and sufficient for its localization to the nucleus.
22

Structural and functional characterization of the budding yeast Mus81-Mms4 complex

Fu, Yu 14 July 2003
The Saccharomyces cerevisiae Mms4 and Mus81 proteins are required for repairing DNA alkylation damage, but not damage caused by ionizing radiations. Previous studies have demonstrated that Mms4 and Mus81 form a specific complex in vivo, which functions as an endonuclease specific for branched DNA molecules. <p> In an effort to further understand the role of the Mus81-Mms4 complex in vivo, the structural and functional characteristics of this complex were investigated in this study. The epistatic analysis revealed that RAD52 was epistatic to MMS4 with respect to killing by methyl methanesulfonate (MMS), suggesting that MMS4 is involved in the RAD52 dependent homologous recombinational repair pathway. However, the mms4 rad51, mms4 rad54 and mms4 rad50 double mutants showed more sensitivity to MMS than either corresponding single gene disruptant. Since Rad51 and Rad54 are required to form the Holliday junction during recombinational repair pathway, it is unlikely that the Mus81-Mms4 complex functions as a Holliday junction resolvase in vivo. <p> The role of MMS4 in DNA damage induced mutagenesis has been investigated. Deletion of MMS4 had no obvious effects on damage-induced basepair mutations, but increased frame-shift mutations by 3 fold when the yeast cells were treated with MMS. This suggests that the Mus81-Mms4 complex plays a role in limiting the damage-induced frame-shift mutagenesis. <p> Through a yeast two-hybrid assay, Mus81 and Mms4 have been demonstrated to form a stable and specific complex in vivo. This result is consistent with previous studies. To localize the domains of the Mms4 and Mus81 proteins involved in herterodimer formation, a series of deletion mutants were constructed for the yeast two-hybrid assay. The Mus81-binding domain of Mms4 was mapped to the extreme C-terminal region between amino acids 598-691. The Mms4-binding domain of Mus81 was mapped to a domain between amino acids 527-632. The results from co-immunoprecipitation experiment were consistent with those from the yeast two-hybrid assay. The Mms4-1 (Gly173Arg) protein was found to lose its interaction with Mus81, and this kind of amino acid substitution is very likely to alter the three-dimension structure of the protein. Thus we hypothesize that the three-dimensional structure is also important for Mms4 to interact with Mus81. <p> By studies on green fluorescent protein (GFP) fusion proteins and their subcellular localization, we demonstrated that Mms4 and Mus81 are nuclear proteins. When the putative nuclear localization sequence 1 (residues 244-263) in Mms4 was deleted, the truncated protein lost the ability to enter the nucleus. On the contrary, deletion of the putative nuclear localization sequence 2 (residues 539-555) had no effect on the localization of the protein. Furthermore, the nuclear localization of Mus81 was proven to be independent of its interaction with Mms4, and the N-terminal half of Mus81 is necessary and sufficient for its localization to the nucleus.
23

Functional Characterization of Members of a Clade of F-box Proteins in Arabidopsis thaliana

Turgeon, Paul Joseph 26 February 2009 (has links)
In Arabidopsis, the F-box gene family encodes a large number of proteins postulated to act as substrate selectors for proteasome-mediated protein degradation. Recent reports document the importance of F-box proteins in developmental and metabolic signaling. Our microarray analyses of inflorescences of the brevipedicellus(bp) mutant indicate several F-box proteins are upregulated, suggesting that BP represses these genes in wild type plants to condition normal inflorescence development. We undertook analyses to examine the function of these proteins and their contribution to the pleiotropic phenotypes of bp. Yeast-2-hybrid screens revealed that the F-box protein At1g80440 binds to phenylalanine ammonia lyase-1(PAL1), the gateway enzyme of phenylpropanoid metabolism. Transgenic lines driven by the 35S cauliflower mosaic virus were attained but could not be propagated, suggesting a fatal phenotype. BP driven F-box expression results in phyllotaxy defects, manifest as alterations in the emergence of inflorescence and floral meristems in the axils of some cauline leaves.
24

Role of FtsA in cell division in <i>Neisseria gonorrhoeae</i>

Li, Yan 09 May 2011 (has links)
<p> Bacterial cell division is an essential process, which is initiated by forming the Z-ring as a cytoskeletal scaffold at the midcell site, followed by the recruitment of a series of divisome proteins. In <i>Escherichia coli</i> (Ec), at least 15 divisome proteins (FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsB, FtsL, FtsI, FtsW, FtsN, FtsE, FtsX, ZapA, AmiC, EnvC) have been implicated in this process. The components of the cell division machinery proteins in <i>Neisseria gonorrhoeae</i> (Ng) differs from <i>E. coli. N. gonorrhoeae</i> possesses FtsA, but lacks FtsB. ZipA and FtsL in <i>N. gonorrhoeae</i> have low identity to ZipA and FtsL from <i>E. coli</i>. Our laboratory has studied the central division protein FtsZ in <i>N. gonorrhoeae</i>. Thus, my research investigated the role of <i>N. gonorrhoeae</i> FtsA in cell division and investigated the interactions between divisome proteins from <i>N. gonorrhoeae</i> to understand divisome assembly.</p> <p>This study determined the association of FtsA<sub>Ng</sub> with FtsZ</sub>Ng and other divisome proteins in <i>N. gonorrhoeae</i> and identified the functional domains of FtsA<sun>Ng</sub> involved in these interactions using a bacterial two-hybrid (B2H) assay. FtsA<sub>Ng</sub> interacted with FtsZ<sub>Ng</sub>, FtsK<sub>Ng</sub>, FtsW<sub>Ng</sub>, FtsQ<sub>Ng</sub>, and FtsN<sub>Ng</sub>. Self-interactions of FtsA<sub>Ng</sub> and FtsZ<sub>Ng</sub> were also detected. FtsI<sub>Ng</sub>, FtsE<sub>Ng</sub> and FtsX<sub>Ng</sub> did not interact with FtsA<sub>Ng</sub>. The 2A<sub>1</sub>, 2A<sub>2</sub> and 2B domains of FtsA<sub>Ng</sub> were sufficient to interact with FtsZ<sub>Ng</sub> independently. Domain 2A<sub>1</sub> interacted with FtsK<sub>Ng</sub> and FtsN<sub>Ng</sub>. Domain 2B of FtsA<sub>Ng</sub> interacted with FtsK<sub>Ng</sub>, FtsQ<sub>Ng</sub>, and FtsN<sub>Ng</sub>. Domain 2A<sub>2</sub> of FtsA<sub>Ng</sub> interacted with FtsQ<sub>Ng</sub>, FtsW<sub>Ng</sub>, and FtsN<sub>Ng</sub>. These data suggest that FtsA in <i>N. gonorrhoeae</i> plays a key role in interactions with FtsZ and other divisome proteins.</p> <p>The potential interactions between divisome proteins in <i>N. gonorrhoeae</i> were examined using B2H assays. The comparisons between the <i>N. gonorrhoeae</i> divisome protein interaction network and those of <i>E. coli</i> and <i>S. pneumoniae</i> indicates that the divisome protein interactome of <i>N. gonorrhoeae</i> is more similar to that of <i>S. pneumoniae</i> and differs from that of <i>E. coli</i>. The comparisons revealed that compared to the interactions in <i>E. coli</i> and <i>S. pneumoniae</i>, more interactions between divisome proteins upstream of FtsA<sub>Ng</sub> (including FtsA<sub>Ng</sub>) and downstream of FtsA<sub>Ng</sub> were observed in <i>N. gonorrhoeae</i> while fewer interactions between divisome proteins downstream of FtsA<sub>Ng</sub> were observed in <i>N. gonorrhoeae</i>. Possible reasons for this include the inability of ZipA<sub>Ng</sub> to interact with other divisome proteins and the absence of FtsL and FtsB in <i>N. gonorrhoeae</i>, resulting in the lack of an FtsQ-FtsB-FtsL complex in <i>N. gonorrhoeae</i>. These results indicate a possibly different divisome assembly in <i>N. gonorrhoeae</i> from that proposed models for <i>E. coli</i>.</p> A model for FtsA<sub>Ng</sub> structure was predicted based on structural homology modeling with the resolved crystal structure of <i>Thermotoga maritima</i> FtsA. Four domains on the molecule were identified, designated 1A, 1C, 2B and 2A (including 2A<sub>1</sub> and 2A<sub>2</sub>). Domains 2A and 2B of FtsA were highly conserved based on multi-sequence alignments of FtsAs from 30 bacteria. FtsA<sub>Ng</sub> located to the division site in <i>N. gonorrhoeae</i> cells and the ratio of FtsA to FtsZ ranged from 1:24 to 1: 33 in three <i>N. gonorrhoeae</i> strains, which gave a lower cellular concentration of FtsA compared to other organisms.</p> <p>I also determined that overexpression of FtsA<sub>Ng</sub> in <i>E. coli</i> led to cell filamentous in rod-shaped <i>E. coli</i> and cell enlargement and aggregation in mutant, round <i>E. coli</i>. FtsA<sub>Ng</sub> failed to complement an <i>ftsA</i><sub>Ec</sub>-deletion <i>E. coli</i> strain although the overexperssion of FtsA<sub>Ng</sub> disrupted <i>E. coli</i> cell division. In addition, overexpression of FtsA<sub>Ng</sub> only affected cell division in some cells and its localization in <i>E. coli</i> was independent of interaction with <i>E. coli</i> FtsA or FtsZ. These results indicate that FtsA<sub>Ng</sub> exhibits a species-specific functionality and <i>E. coli</i> is not a suitable model for studying FtsA<sub>Ng</sub> functionality.</p> <p>This is the first study to characterize FtsA from <i>N. gonorrhoeae</i> in cell division. I identified novel functional domains of FtsA<sub>Ng</sub> involved in interactions with other divisome proteins. The <i>N. gonorrhoeae</i> divisome protein interaction network determined by B2H assays provides insight into divisome assembly in <i>N. gonorrhoeae</i></p>.
25

SKELETAL MUSCLE SYNTROPHIN INTERACTORS REVEALED BY YEAST TWO-HYBRID ASSAY

INOUE, MASAHIKO, WAKAYAMA, YOSHIHIRO, JIMI, TAKAHIRO, SHIBUYA, SEIJI, HARA, HAJIME, UNAKI, AKIHIKO, KENMOCHI, KIYOKAZU 08 1900 (has links)
No description available.
26

Biologically plausible visual representation of modular decomposition

Rahm, Jonas January 2005 (has links)
<p>Modular decompositions of protein interaction networks can be used to identify modules of cooperating proteins. The biological plausibility off these modules might be questioned though. This report describes how a modular decomposition can be completed with semantic information in the visual representation. Possible methods for creating modules of functionally related proteins are also proposed in this work. The results show that such modules, with advantage can be combined with modules from a graph decomposition, to find proteins that are likely to cooperate to perform certain functions in organisms</p>
27

Identifikation intrazellulärer Interaktionspartner der Rezeptortyrosinkinasen UFO und MET im Two-Hybrid-System

Benzing, Jörg. January 2001 (has links)
Ulm, Univ., Diss., 2001.
28

Systematische Untersuchungen von Proteininteraktionen der MYB und bHLH Transkriptionsfaktoren aus Arabidopsis thaliana

Zimmermann, Ilona. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Köln.
29

Identification and functional analysis of interaction partners of the apoptosis inhibitor DIAP1 in Drosophila

Gagic, Mirjana. Unknown Date (has links)
University, Diss., 2005--Düsseldorf.
30

Identifikation neuer Interaktionspartner des Bazooka-Proteins in Drosphila melanogaster

Egger-Adam, Diane. Unknown Date (has links)
Universiẗat, Diss., 2005--Düsseldorf.

Page generated in 0.0278 seconds