• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem dinâmica de separador bifásico com alimentação por escoamento em regime de golfadas / Dynamic modeling of two-phase separator with feeding for draining in regimen of slug

Rosilene Abreu Portella 07 August 2008 (has links)
Petróleo Brasileiro S.A. / O presente trabalho aborda o comportamento da planta de processamento primário com alimentação por fluxo em padrão de golfadas. O fluxo no sistema de tubulações é descrito por um modelo de parâmetros concentrados, fornecendo as características principais necessárias para o controle da planta, e a resposta dinâmica desta pode então ser analisada. Usando a estratégia de controle tradicional verifica-se que as oscilações de fluxo são transmitidas para as vazões de saída de líquido e gás, para obter uma vazão de saída mais estável é permitida a flutuação de carga no separador dentro de uma tolerância, isto é possível reduzindo a atuação do controlador e estabelecendo um controle adicional diretamente na válvula de entrada. / The present work addresses the behavior of a primary processing plant subjected to slug flow pattern at its entrance. The flow in a pipeline system is described by a simplified concentrated parameter model, which preserves the main physical features that are important to control the plant. The dynamic response of the plant is then analyzed. Using a standard control strategy for the gas liquid separator, it is seen that the flow oscillations are transmitted to the liquid and gas outlets. In order to obtain a more stable outlet flow, the liquid level in the separator is then allowed to fluctuate within a given range, by reducing the effect of the controller constants, and establishing an additional control directly on the inlet entrance valve.
2

Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume method

Julhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.
3

Modelagem dinâmica de separador bifásico com alimentação por escoamento em regime de golfadas / Dynamic modeling of two-phase separator with feeding for draining in regimen of slug

Rosilene Abreu Portella 07 August 2008 (has links)
Petróleo Brasileiro S.A. / O presente trabalho aborda o comportamento da planta de processamento primário com alimentação por fluxo em padrão de golfadas. O fluxo no sistema de tubulações é descrito por um modelo de parâmetros concentrados, fornecendo as características principais necessárias para o controle da planta, e a resposta dinâmica desta pode então ser analisada. Usando a estratégia de controle tradicional verifica-se que as oscilações de fluxo são transmitidas para as vazões de saída de líquido e gás, para obter uma vazão de saída mais estável é permitida a flutuação de carga no separador dentro de uma tolerância, isto é possível reduzindo a atuação do controlador e estabelecendo um controle adicional diretamente na válvula de entrada. / The present work addresses the behavior of a primary processing plant subjected to slug flow pattern at its entrance. The flow in a pipeline system is described by a simplified concentrated parameter model, which preserves the main physical features that are important to control the plant. The dynamic response of the plant is then analyzed. Using a standard control strategy for the gas liquid separator, it is seen that the flow oscillations are transmitted to the liquid and gas outlets. In order to obtain a more stable outlet flow, the liquid level in the separator is then allowed to fluctuate within a given range, by reducing the effect of the controller constants, and establishing an additional control directly on the inlet entrance valve.
4

Simulação numérica do escoamento bifásico em meios porosos heterogêneos empregando uma formulação semi-implícita, imitadores de fluxo e o método dos volumes finitos / Numerical simulation of two-phase flow in heterogeneous porous media applying a semi-implicit formulation, flux limiter and finite volume method

Julhane Alice Thomas Schulz 31 March 2009 (has links)
Neste trabalho apresentamos um esquema numérico para a simulação computacional de escoamentos bifásicos, água-óleo, em reservatórios de petróleo. O modelo matemático consiste em um sistema de equações diferenciais parciais não-linear nas incógnitas velocidade, pressão e saturação. Uma quebra de operadores a dois níveis possibilita uma maior eficiência ao método permitindo que a velocidade, fornecida pelo problema de velocidade-pressão, seja atualizada somente para determinados intervalos de tempo associados ao problema de transporte advectivo-difusivo em termos da saturação. O método dos volumes finitos é empregado na resolução numérica do problema de velocidade-pressão e do transporte de massa por advecção e difusão. Na solução do problema de transporte de massa utilizamos limitadores de fluxo na aproximação dos termos advectivos e diferenças centradas para os termos difusivos. O nosso simulador foi validado a partir de confrontações dos seus resultados com as soluções teóricas conhecidas para os problemas unidimensionais, equações de Burgers e de Buckley-Leverett, e com outros resultados numéricos em se tratando do escoamento bifásico água-óleo bidimensional em meios porosos heterogêneos. / A new numerical method is proposed for the solution of two-phase flow problem in petroleum reservoirs. The two-phase (water and oil) flow problem is governed by a pressure-velocity equation coupled to a saturation equation. For computational eficiency an operator spliting technique is used; distinct time steps can be used for the computation of transport and pressure-velocity problems. The finite volume method is used in the numerical solution of the velocity-pressure and mass transport problems. A flux limiter is used for the numerical discretization of the advective terms while centered schemes are employed for the diffusion terms in the mass transport problem. In the validation of our numerical method we compared numerical and theoretical solutions for one dimensional problems, Burgers and Buckley-Leverett equations, and compared our numerical results to others, in the case of oil-water flows in two dimensions for an heterogeneous porous media.
5

Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirs

Grazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico). O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions. In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.
6

Modelagem computacional de escoamentos com duas e três fases em reservatórios petrolíferos heterogêneos / Computational modeling of two and three-phase flow in heterogeneous petroleum reservoirs

Grazione de Souza 21 February 2008 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Considera-se neste trabalho um modelo matemático para escoamentos com duas e três fases em reservatórios petrolíferos e a modelagem computacional do sistema de equações governantes para a sua solução numérica. Os fluidos são imiscíveis e incompressíveis e as heterogeneidades da rocha reservatório são modeladas estocasticamente. Além disso, é modelado o fenômeno de histerese para a fase óleo via funções de permeabilidades relativas. No caso de escoamentos trifásicos água-óleo-gás a escolha de expressões gerais para as funções de permeabilidades relativas pode levar à perda de hiperbolicidade estrita e, desta maneira, à existência de uma região elíptica ou de pontos umbílicos para o sistema não linear de leis de conservação hiperbólicas que descreve o transporte convectivo das fases fluidas. Como conseqüência, a perda de hiperbolicidade estrita pode levar à existência de choques não clássicos (também chamados de choques transicionais ou choques subcompressivos) nas soluções de escoamentos trifásicos, de difícil simulação numérica. Indica-se um método numérico com passo de tempo fracionário, baseado em uma técnica de decomposição de operadores, para a solução numérica do sistema governante de equações diferenciais parciais que modela o escoamento bifásico água-óleo imiscível em reservatórios de petróleo heterogêneos. Um simulador numérico bifásico água-óleo eficiente desenvolvido pelo grupo de pesquisa no qual o autor está inserido foi modificado com sucesso para incorporar a histerese sob as hipóteses consideradas. Os resultados numéricos obtidos para este caso indicam fortes evidências que o método proposto pode ser estendido para o caso trifásico água-óleo-gás. A técnica de decomposição de operadores em dois níveis permite o uso de passos de tempo distintos para os quatro problemas definidos pelo procedimento de decomposição: convecção, difusão, pressão-velocidade e relaxação para histerese. O problema de transporte convectivo (hiperbólico) das fases fluidas é aproximado por um esquema central de diferenças finitas explícito, conservativo, não oscilatório e de segunda ordem. Este esquema é combinado com elementos finitos mistos, localmente conservativos, para a aproximação dos problemas de transporte difusivo (parabólico) e de pressão-velocidade (elíptico). O operador temporal associado ao problema parabólico de difusão é resolvido fazendo-se uso de uma estratégia implícita de solução (Backward Euler). Uma equação diferencial ordinária é resolvida (analiticamente) para a relaxação relacionada à histerese. Resultados numéricos para o problema bifásico água-óleo em uma dimensão espacial em concordância com resultados semi-analíticos disponíveis na literatura foram reproduzidos e novos resultados em meios heterogêneos, em duas dimensões espaciais, são apresentados e a extensão desta técnica para o caso de problemas trifásicos água-óleo-gás é proposta. / We consider in this work a mathematical model for two- and three-phase flow problems in petroleum reservoirs and the computational modeling of the governing equations for its numerical solution. We consider two- (water-oil) and three-phase (water-gas-oil) incompressible, immiscible flow problems and the reservoir rock is considered to be heterogeneous. In our model, we also take into account the hysteresis effects in the oil relative permeability functions. In the case of three-phase flow, the choice of general expressions for the relative permeability functions may lead to the loss of strict hyperbolicity and, therefore, to the existence of an elliptic region or umbilic points for the system of nonlinear hyperbolic conservation laws describing the convective transport of the fluid phases. As a consequence, the loss of hyperbolicity may lead to the existence of nonclassical shocks (also called transitional shocks or undercompressive shocks) in three-phase flow solutions. We present a new, accurate fractional time-step method based on an operator splitting technique for the numerical solution of a system of partial differential equations modeling two-phase, immiscible water-oil flow problems in heterogeneous petroleum reservoirs. An efficient two-phase water-oil numerical simulator developed by our research group was sucessfuly extended to take into account hysteresis effects under the hypotesis previously annouced. The numerical results obtained by the procedure proposed indicate numerical evidence the method at hand can be extended for the case of related three-phase water-gas-oil flow problems. A two-level operator splitting technique allows for the use of distinct time steps for the four problems defined by the splitting procedure: convection, diffusion, pressure-velocity and relaxation for hysteresis. The convective transport (hyperbolic) of the fluid phases is approximated by a high resolution, nonoscillatory, second-order, conservative central difference scheme in the convection step. This scheme is combined with locally conservative mixed finite elements for the numerical solution of the diffusive transport (parabolic) and the pressure-velocity (elliptic) problems. The time discretization of the parabolic problem is performed by means of the implicit Backward Euler method. An ordinary diferential equation is solved (analytically) for the relaxation related to hysteresis. Two-phase water-oil numerical results in one space dimensional, in which are in a very good agreement with semi-analitycal results available in the literature, were computationaly reproduced and new numerical results in two dimensional heterogeneous media are also presented and the extension of this technique to the case of three-phase water-oil-gas flows problems is proposed.

Page generated in 0.0972 seconds