Spelling suggestions: "subject:"4o.stage stochastic programming"" "subject:"backstage stochastic programming""
1 |
Task Optimization and Workforce SchedulingShateri, Mahsa 31 August 2011 (has links)
This thesis focuses on task sequencing and manpower scheduling to develop robust schedules for an aircraft manufacturer. The production of an aircraft goes through a series of multiple workstations, each consisting of a large number of interactive tasks and a limited number of working zones. The duration of each task varies from operator to operator, because most operations are performed manually. These factors limit the ability of managers to balance, optimize, and change the statement of work in each workstation. In addition, engineers spend considerable amount of time to manually develop schedules that may be incompatible with the changes in the production rate.
To address the above problems, the current state of work centers are first analyzed. Then, several deterministic mathematical programming models are developed to minimize the total production labour cost for a target cycle time. The mathematical models seek to find optimal schedules by eliminating and/or considering the effect of overtime on the production cost. The resulting schedules decrease the required number of operators by 16% and reduce production cycle time of work centers by 53% to 67%. Using these models, the time needed to develop a schedule is reduced from 36 days to less than a day.
To handle the stochasticity of the task durations, a two-stage stochastic programming model is developed to minimize the total production labour cost and to find the number of operators that are able to work under every scenario. The solution of the two-stage stochastic programming model finds the same number of operators as that of the deterministic models, but reduces the time to adjust production schedules by 88%.
|
2 |
Task Optimization and Workforce SchedulingShateri, Mahsa 31 August 2011 (has links)
This thesis focuses on task sequencing and manpower scheduling to develop robust schedules for an aircraft manufacturer. The production of an aircraft goes through a series of multiple workstations, each consisting of a large number of interactive tasks and a limited number of working zones. The duration of each task varies from operator to operator, because most operations are performed manually. These factors limit the ability of managers to balance, optimize, and change the statement of work in each workstation. In addition, engineers spend considerable amount of time to manually develop schedules that may be incompatible with the changes in the production rate.
To address the above problems, the current state of work centers are first analyzed. Then, several deterministic mathematical programming models are developed to minimize the total production labour cost for a target cycle time. The mathematical models seek to find optimal schedules by eliminating and/or considering the effect of overtime on the production cost. The resulting schedules decrease the required number of operators by 16% and reduce production cycle time of work centers by 53% to 67%. Using these models, the time needed to develop a schedule is reduced from 36 days to less than a day.
To handle the stochasticity of the task durations, a two-stage stochastic programming model is developed to minimize the total production labour cost and to find the number of operators that are able to work under every scenario. The solution of the two-stage stochastic programming model finds the same number of operators as that of the deterministic models, but reduces the time to adjust production schedules by 88%.
|
3 |
Modely stochastického programování a jejich aplikace / Stochastic programming models with applicationsNovotný, Jan January 2008 (has links)
Diplomová práce se zabývá stochastickým programováním a jeho aplikací na problém mísení kameniva z oblasti stavebního inženýrství. Teoretická část práce je věnována odvození základních přístupů stochastického programování, tj. optimalizace se zohledněním náhodných vlivů v modelech. V aplikované části je prezentována tvorba vhodných optimalizačních modelů pro mísení kameniva, jejich implementace a výsledky. Práce zahrnuje původní aplikační výsledky docílené při řešení projektu GA ČR reg. čís. 103/08/1658 Pokročilá optimalizace návrhu složených betonových konstrukcí a teoretické výsledky projektu MŠMT České republiky čís. 1M06047 Centrum pro jakost a spolehlivost výroby.
|
4 |
Two-Stage Stochastic Model to Invest in Distributed Generation Considering the Long-Term UncertaintiesAngarita-Márquez, Jorge L., Mokryani, Geev, Martínez-Crespo, J. 13 October 2021 (has links)
Yes / This paper used different risk management indicators applied to the investment optimization performed by consumers in Distributed Generation (DG). The objective function is the total cost incurred by the consumer including the energy and capacity payments, the savings, and the revenues from the installation of DG, alongside the operation and maintenance (O&M) and investment costs. Probability density function (PDF) was used to model the price volatility in the long-term. The mathematical model uses a two-stage stochastic approach: investment and operational stages. The investment decisions are included in the first stage and which do not change with the scenarios of the uncertainty. The operation variables are in the second stage and, therefore, take different values with every realization. Three risk indicators were used to assess the uncertainty risk: Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and Expected Value (EV). The results showed the importance of migration from deterministic models to stochastic ones and, most importantly, the understanding of the ramifications of every risk indicator.
|
5 |
A Hybrid of Stochastic Programming Approaches with Economic and Operational Risk Management for Petroleum Refinery Planning under UncertaintyKhor, Cheng Seong January 2006 (has links)
In view of the current situation of fluctuating high crude oil prices, it is now more important than ever for petroleum refineries to operate at an optimal level in the present dynamic global economy. Acknowledging the shortcomings of deterministic models, this work proposes a hybrid of stochastic programming formulations for an optimal midterm refinery planning that addresses three factors of uncertainties, namely price of crude oil and saleable products, product demand, and production yields. An explicit stochastic programming technique is utilized by employing compensating slack variables to account for violations of constraints in order to increase model tractability. Four approaches are considered to ensure both solution and model robustness: (1) the Markowitz???s mean???variance (MV) model to handle randomness in the objective coefficients of prices by minimizing variance of the expected value of the random coefficients; (2) the two-stage stochastic programming with fixed recourse approach via scenario analysis to model randomness in the right-hand side and left-hand side coefficients by minimizing the expected recourse penalty costs due to constraints??? violations; (3) incorporation of the MV model within the framework developed in Approach 2 to minimize both the expectation and variance of the recourse costs; and (4) reformulation of the model in Approach 3 by adopting mean-absolute deviation (MAD) as the risk metric imposed by the recourse costs for a novel application to the petroleum refining industry. A representative numerical example is illustrated with the resulting outcome of higher net profits and increased robustness in solutions proposed by the stochastic models.
|
6 |
Algoritmy pro řešení stochastických dvoustupňových úloh / Algorithms for solving two-stage stochastic programsVlčková, Ivona January 2017 (has links)
The thesis deals with the algorithms for two-stage stochastic programs. The first chapter considers the basic properties and theory. Specifically, we introduce the properites of the feasibility region and the objective function. Further, optimality conditions are discussed. In the second chapter we present algoritms which can be used to solve two-stage linear programs with fixed recourse. In the first section the basic L-shaped method is described in detail. The second section provides an explanation of the Stochastic Decomposition algorithm with the inclusion of a regularization term. The last chapter presents computational results. Three practical examples are provided both with a brief description of the problem and solutions by the studied algorithms.
|
7 |
A Hybrid of Stochastic Programming Approaches with Economic and Operational Risk Management for Petroleum Refinery Planning under UncertaintyKhor, Cheng Seong January 2006 (has links)
In view of the current situation of fluctuating high crude oil prices, it is now more important than ever for petroleum refineries to operate at an optimal level in the present dynamic global economy. Acknowledging the shortcomings of deterministic models, this work proposes a hybrid of stochastic programming formulations for an optimal midterm refinery planning that addresses three factors of uncertainties, namely price of crude oil and saleable products, product demand, and production yields. An explicit stochastic programming technique is utilized by employing compensating slack variables to account for violations of constraints in order to increase model tractability. Four approaches are considered to ensure both solution and model robustness: (1) the Markowitz’s mean–variance (MV) model to handle randomness in the objective coefficients of prices by minimizing variance of the expected value of the random coefficients; (2) the two-stage stochastic programming with fixed recourse approach via scenario analysis to model randomness in the right-hand side and left-hand side coefficients by minimizing the expected recourse penalty costs due to constraints’ violations; (3) incorporation of the MV model within the framework developed in Approach 2 to minimize both the expectation and variance of the recourse costs; and (4) reformulation of the model in Approach 3 by adopting mean-absolute deviation (MAD) as the risk metric imposed by the recourse costs for a novel application to the petroleum refining industry. A representative numerical example is illustrated with the resulting outcome of higher net profits and increased robustness in solutions proposed by the stochastic models.
|
8 |
Advanced Decomposition Methods in Stochastic Convex Optimization / Advanced Decomposition Methods in Stochastic Convex OptimizationKůdela, Jakub Unknown Date (has links)
Při práci s úlohami stochastického programování se často setkáváme s optimalizačními problémy, které jsou příliš rozsáhlé na to, aby byly zpracovány pomocí rutinních metod matematického programování. Nicméně, v některých případech mají tyto problémy vhodnou strukturu, umožňující použití specializovaných dekompozičních metod, které lze použít při řešení rozsáhlých optimalizačních problémů. Tato práce se zabývá dvěma třídami úloh stochastického programování, které mají speciální strukturu, a to dvoustupňovými stochastickými úlohami a úlohami s pravděpodobnostním omezením, a pokročilými dekompozičními metodami, které lze použít k řešení problému v těchto dvou třídách. V práci popisujeme novou metodu pro tvorbu “warm-start” řezů pro metodu zvanou “Generalized Benders Decomposition”, která se používá při řešení dvoustupňových stochastických problémů. Pro třídu úloh s pravděpodobnostním omezením zde uvádíme originální dekompoziční metodu, kterou jsme nazvali “Pool & Discard algoritmus”. Užitečnost popsaných dekompozičních metod je ukázána na několika příkladech a inženýrských aplikacích.
|
9 |
On topological measures and network vulnerability patterns: a review and comparative analysisSaei, Saviz 13 December 2024 (has links) (PDF)
Despite much hope for climate change to slow down or even reverse, younger generations face a future overshadowed by extreme events. The indisputable reality is that unless the United Nations establishes comprehensive and sustained climate justice policies, children today will experience five times more extreme events than those that took place a century ago. On Monday, July 3rd of 2023, an unprecedented peak in global temperatures was documented, marking the highest global temperature ever recorded, as the U.S. National Centers for Environmental Prediction reported. These increasing temperatures indicate the ongoing and intensifying phenomenon of climate change, which amplifies the frequency and severity of certain natural disasters. Given that vulnerability reflects the extent of damage following a disruptive event, reducing vulnerability is a critical initial step toward enhancing resilience—the capacity to withstand and recover from such disruptions. Reflecting on the words of H. James Harrington, the seminal figure in organizational performance improvement, “Measurement is the first step that leads to control and eventually to improvement. If you can’t measure something, you can’t understand it. If you can’t understand it, you can’t control it. If you can’t control it, you can’t improve it.” The findings of this study highlight a macroscopic approach to understanding and predicting network vulnerability in the face of uncertain disruptive events by focusing on the statistical analysis of global measures (GMs) related to network topological characteristics. The distribution of GM values across 15 pure network topologies reveals specific patterns. This discovery offers a novel metric for assessing the performance of networks with unknown topologies by comparing their GM patterns to those of the studied topologies. Furthermore, by intertwining local vulnerability assessments with our scenario-based strategy, we aim to conduct a thorough examination of each node’s significance in maintaining network integrity during disruptions. This analysis is intended to uncover the underlying structural intricacies of these networks, enabling a comparison with established topological standards to identify opportunities for optimization. Additionally, we expand the scope of our model by incorporating traffic flow considerations using the Bureau of Public Roads (BPR) function to optimize network resilience. Key words: Global Measures, Vulnerability, Uncertainty in vulnerability, Connectivity, Accessibility, Criticality, Network topology, Local Measures, Bureau of Public Roads (BPR), Scenario based-Two stage stochastic programming, Risk
|
10 |
Modely stochastického programování v inženýrském návrhu / The Selected Stochastic Programs in Engineering DesignČajánek, Michal January 2009 (has links)
Two-stage stochastic programming problem with PDE constraint, specially elliptic equation is formulated. The computational scheme is proposed, whereas the emphasis is put on approximation techniques. We introduce method of approximation of random variables of stochastic problem and utilize suitable numerical methods, finite difference method first, then finite element method. There is also formulated a mathematical programming problem describing a membrane deflection with random load. It is followed by determination of the acceptableness of using stochastic optimization rather than deterministic problem and assess the quality of approximations based on Monte Carlo simulation method and the theory of interval estimates. The resulting mathematical models are implemented and solved in the general algebraic modeling system GAMS. Graphical and numerical results are presented.
|
Page generated in 0.1429 seconds