• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-Mechanical Coupling for Ablation

Fu, Rui 01 January 2018 (has links)
In order to investigate the thermal stress and expansion as well as the associated strain effect on material properties caused by high temperature and large temperature gradient, a two-way thermo-mechanical coupling solver is developed. This solver integrates a new structural response module to the Kentucky Aerothermodynamics and Thermal response System (KATS) framework. The structural solver uses a finite volume approach to solve either hyperbolic equations for transient solid mechanics, or elliptic equations for static solid mechanics. Then, based on the same framework, a quasi-static approach is used to couple the structural response and thermal response to estimate the thermal expansion and stress within Thermal Protection System (TPS) materials. To better capture the thermal expansion and study its impacts on material properties such as conductivity and porosity, a moving mesh scheme is also developed and incorporated into the solver. Grid deformation is transferred among different modules in the form of variations of geometric parameters and strain effects. By doing so, a bi-direction information loop is formed to accomplish the two-way strong thermo-mechanical coupling. Results revealed that the thermal stress experienced during atmospheric re-entry concentrates in a banded area at the edge of the pyrolysis zone and its magnitude can be large enough to cause the failure of the TPS. In addition, thermal expansion causes the whole structure to deform and the changes in material properties. Results also indicated that the impacts coming from structural response should not be ignored in thermal response.
2

Rigid, Melting, and Flowing Fluid

Carlson, Mark Thomas 29 October 2004 (has links)
This work focuses on the simulation of fluids as they transition between a solid and a liquid state, and as they interact with rigid bodies in a realistic fashion. There is an underlying theme to my work that I did not recognize until I examined my body of research as a whole. The equations of motion that are generally considered appropriate only for liquids or gas can also be used to model solids. Without adding extra constraints, one can model a solid simply as a fluid with a high viscosity. Admittedly, this representation will only get you so far, but this simple representation can create some very nice animations of objects that start as solids, and then melt into liquid over time. Another way to represent solids with the fluid equations is to add extra constraints to the equations. I use this representation in the parts of this work that focus on the two-way coupling of liquids with rigid bodies. The coupling affects both how the liquid moves the rigid bodies, and how the rigid bodies in turn affect the motion of the fluid. There are three components that are needed to allow solids and fluids to interact: a rigid body solver, a fluid solver, and a mechanism for the coupling of the two solvers. The fluid solver used in this work was presented in [8]. This Melting and Flowing solver is a fast and stable system for animating materials that melt, flow, and solidify. Examples of realworld materials that exhibit these phenomena include melting candles, lava flow, the hardening of cement, icicle formation, and limestone deposition. Key to this fluid solver is the idea that we can plausibly simulate such phenomena by simply varying the viscosity inside a standard fluid solver, treating solid and nearly-solid materials as very high viscosity fluids. The computational method modifies the Marker-And-Cell algorithm [99] in order to rapidly simulate fluids with variable and arbitrarily high viscosity. The modifications allow the viscosity of the material to change in space and time according to variation in temperature, water content, or any other spatial variable. This in turn allows different locations in the same continuous material to exhibit states ranging from the absolute rigidity or slight bending of hardened wax to the splashing and sloshing of water. The coupling that ties together the rigid body and fluid solvers was presented in [7], and is known as the Rigid Fluid method. It is a technique for animating the interplay between rigid bodies and viscous incompressible fluid with free surfaces. Distributed Lagrange multipliers are used to ensure two-way coupling that generates realistic motion for both the solid objects and the fluid as they interact with one another. The rigid fluid method is so named because the simulator treats the rigid objects as if they were made of fluid. The rigidity of such an object is maintained by identifying the region of the velocity field that is inside the object and constraining those velocities to be rigid body motion. The rigid fluid method is straightforward to implement, incurs very little computational overhead, and can be added as a bridge between current fluid simulators and rigid body solvers. Many solid objects of different densities (e.g., wood or lead) can be combined in the same animation. The rigid body solver used in this work is the impulse based solver, with shock propagation introduced by Guendelman et al. in [36]. The rigid body solver allows for collisions ranging from completely elastic, where an object can bounce around forever without loss of energy, to completely inelastic where all energy is spent in the collision. Static and dynamic frictional forces are also incorporated. The details of this rigid body solver will not be discussed, but the small changes needed to couple this solver to interact with fluid will be. When simulating fluids, the fluid-air interface (free surface) is an important part of the simulation. In [8], the free surface is modelled by a set of marker particles, and after running a simulation we create detailed polygonal models of the fluid by splatting particles into a volumetric grid and then render these models using ray tracing with sub-surface scattering. In [7], I model the free surface with a particle level set technique [14]. The surface is then rendered by first extracting a triangulated surface from the level set and then ray tracing that surface with the Persistence of Vision Raytracer (http://povray.org).
3

Modelling of turbulent gas-particle flow

Strömgren, Tobias January 2008 (has links)
<p>An Eulerian-Eulerian model for dilute gas-particle turbulent flows is</p><p>developed for engineering applications. The aim is to understand the effect of particles on turbulent flows. The model is implemented in a finite element code which is used to perform numerical simulations. The feedback from the particles on the turbulence and the mean flow of the gas in a vertical channel flow is studied. In particular, the influence of the particle response time and particle volume fraction on the preferential concentration of the particles near the walls, caused by the turbophoretic effect is explored. The study shows that the particle feedback decreases the accumulation of particles on the walls. It is also found that even a low particle volume fraction can have a significant impact on the turbulence and the mean flow of the gas. A model for the particle fluctuating velocity in turbulent gas-particle flow is derived using a set of stochastic differential</p><p>equations. Particle-particle collisions were taken into account. The model shows that the particle fluctuating velocity increases with increasing particle-particle collisions and that increasing particle response times decrease the fluctuating velocity.</p>
4

三次元渦法による固気二相同軸円形噴流の数値解析

内山, 知実, UCHIYAMA, Tomomi, 深瀬, 昭仁, FUKASE, Akihito 08 1900 (has links)
No description available.
5

Modelling of turbulent gas-particle flow

Strömgren, Tobias January 2008 (has links)
An Eulerian-Eulerian model for dilute gas-particle turbulent flows is developed for engineering applications. The aim is to understand the effect of particles on turbulent flows. The model is implemented in a finite element code which is used to perform numerical simulations. The feedback from the particles on the turbulence and the mean flow of the gas in a vertical channel flow is studied. In particular, the influence of the particle response time and particle volume fraction on the preferential concentration of the particles near the walls, caused by the turbophoretic effect is explored. The study shows that the particle feedback decreases the accumulation of particles on the walls. It is also found that even a low particle volume fraction can have a significant impact on the turbulence and the mean flow of the gas. A model for the particle fluctuating velocity in turbulent gas-particle flow is derived using a set of stochastic differential equations. Particle-particle collisions were taken into account. The model shows that the particle fluctuating velocity increases with increasing particle-particle collisions and that increasing particle response times decrease the fluctuating velocity. / QC 20101124
6

Model predictions of turbulent gas-particle shear flows

Strömgren, Tobias January 2010 (has links)
A turbulent two-phase flow model using kinetic theory of granularflows for the particle phase is developed and implmented in afinite element code. The model can be used for engineeringapplications. However, in this thesis it is used to investigateturbulent gas-particle flows through numerical simulations.  The feedback from the particles on the turbulence and the meanflow of the gas in a vertical channel flow is studied. In particular,the influence of the particle response time, particle volumefraction and particle diameter on the preferential concentration ofthe particles near the walls, caused by the turbophoretic effect isexplored. The study shows that when particle feedback is includedthe accumulation of particles near the walls decreases. It is also foundthat even at low volume fractions particles can have a significant impacton the turbulence and the mean flow of the gas. The effect of particles on a developing turbulent vertical upward pipeflow is also studied. The development length is found to substantiallyincrease compared to an unladen flow. To understand what governs thedevelopment length a simple estimation was derived, showing that itincreases with decreasing particle diameters in accordance with themodel simulations. A model for the fluctuating particle velocity in turbulentgas-particle flow is derived using a set of stochastic differentialequations taking into account particle-particle collisions. Themodel shows that the particle fluctuating velocity increases whenparticle-particle collisions become more important and that increasingparticle response times reduces the fluctuating velocity. The modelcan also be used for an expansion of the deterministic model for theparticle kinetic energy. / QC20100726
7

Real-time Snow Simulator using Iterative-relaxation and Boundary Handling

Nordin, Adrian, Nylén, Simon January 2021 (has links)
Background Physics-based snow simulation in real time is an unexplored area, the reason being the difficulty introduced by the multitude of factors that affect the snow behaviour, such as cohesion, thermodynamics, and compression. Simulating snow in real time when considering these factors can become computationally demanding. However, the continued advancement of graphics processing units makes the exploration of real-time snow simulation attractive. Recently published research on real time physics-based snow simulation shows promising results in a parallel solution and will serve as motivation and base for this thesis. Objectives This thesis aims to improve the time-step of a previously proposed method using an iterative method and improve the snow behaviour with a particle-based boundary handling implementation. The aim consists of the following objectives. Integrate an iterative method, extend the snow behaviour with additional snow types, and implement a particle-based boundary handling method with two-way coupling. The proposed method should remain comparable to the original method in terms of snow behaviour. In order to gather results, the methods are measured in performance and used in a questionnaire to analyse the behaviour. Methods An iterative method along with a particle-based boundary handling method is implemented. The methods are both measured and compared using quantitative tests. Additionally, a questionnaire is deployed to gather qualitative results about the behaviour of the snow. Results The proposed method outperforms the original method in terms of time-step size. The proposed method is capable of increasing the time-step tenfold while decreasing the execution time by approximately eight times. Finally, the results from the questionnaire verify the perceived naturalism of the snow and its comparability to the original method. Conclusions The proposed method can perform with an increased time-step and a lower execution time compared to the original method, at the cost of time spent per frame. Lastly, the snow is perceived as natural with the boundary handling method at a significance level of 1 %. / Bakgrund Fysikbaserad snösimulering i realtid är ett outforskat område, anledning till detta är mängden faktorer som påverkar snö, exempelvis sammanhållning, termodynamik och kompression. Simulering av snö i realtid som tar hänsyn till dessa faktorer kan bli beräkningsmässigt krävande, däremot har den växande utvecklingen av grafikprocessorer gjort utforskning av realtidsmetoder ytterligare attraktivt. Nyligen publicerad forskning inom fysikbaserade snösimuleringar i realtid visar lovande resultat i en parallell lösning och kommer att användas som motivering samt bas i detta examensarbete. Syfte Detta examensarbete syftar till att förbättra tidsstegen i en tidigare implementerad metod med hjälp av att använda ett iterativt tillvägagångssätt samt förbättra snöbeteendet med en partikelbaserad gränshanteringsimplementation. Syftet är uppdelat i följande mål. Integrera en iterativ metod, utöka snöbeteendet med ytterligare snötyper, och implementera en partikelbaserad gränshanteringsmetod med tvåvägskoppling. Den föreslagna metoden ska förhålla sig jämförbar med originalmetoden med avseende på snöbeteendet. Slutligen för att samla in resultat mäts metoderna i prestanda och dessutom används ett frågeformulär för att analysera beteendet. Metod En iterativ metod tillsammans med en partikelbaserad gränshanteringsmetod är implementerad. Båda metoderna mäts och jämförs med hjälp av kvantitativa tester. Dessutom distribueras ett kvalitativt frågeformulär för att samla resultat om snöns beteende.  Resultat Den föreslagna metoden tillåter större tidsteg än originalmetoden. Den iterativa metoden är kapabel till att förstora tidsstegen tiofaldigt, samtidigt som den sänker exekveringstiden till en åttondel. Resultaten verifierar den uppfattade naturligheten av snön och jämförelsebarheten till originalmetoden. Slutsatser Den föreslagna metoden kan prestera med ett större tidssteg och en lägre exekveringstid jämfört med originalet i utbyte av högre tid spenderad per bildruta. Slutligen uppfattas snön som naturlig i sammankoppling med gränshanteringsmetoden vid en signifikansnivå på 1 %.
8

Lagrangian stochastic modeling of turbulent gas-solid flows with two-way coupling in homogeneous isotropic turbulence / Modélisation lagrangienne stochastique des écoulements gaz-solides turbulents avec couplage inverse en turbulence homogène isotrope stationnaire

Zeren, Zafer 29 October 2010 (has links)
Dans ce travail de thèse, réalisé à l'IMFT, nous nous sommes intéressés aux écoulements turbulents diphasiques gaz-solides et plus particulièrement au phénomène de couplage inverse qui correspond à la modulation de la turbulence par la phase dispersée. Ce mécanisme est crucial pour les écoulements à forts chargements massiques. Dans cette thèse, nous avons considéré une turbulence homogène isotrope stationnaire sans gravité dans laquelle des particules sont suivies individuellement d'une façon Lagrangienne. La turbulence du fluide porteur est obtenue par des simulations directes (DNS). Les particules sont sphériques, rigides et d'une taille inférieure aux plus petites échelles de la turbulence. Leur densité est bien plus grande que la densité du fluide. Dans ce cadre, la force la plus importante agissant sur les particules est celle de traînée. Les interactions inter-particules ainsi que la gravité ne sont pas prises en compte. Pour modéliser ce type d'écoulement, une approche stochastique est utilisée pour laquelle l'accélération du fluide est modélisée par une équation de Langevin. L'originalité de ce travail est la prise en compte de l'effet de la modulation de la turbulence par un terme additionnel. Nous avons proposé deux modèles : une force de couplage moyenne qui est définie à partir des vitesses moyennes des phases, et une force instantanée qui est définie à l'aide du formalisme mésoscopique Eulérien. La fermeture des modèles s’appuie sur la fonction d’autocorrélation Lagrangienne et l’équation de transport de l’énergie cinétique. Les modèles sont testés en terme de prédiction de la vitesse de dérive et des corrélations fluide-particule. Les résultats montrent que le modèle moyen, plus simple, prend en compte les effets principaux du couplage inverse. Cependant, le problème de fermeture pratique est reporté sur la modélisation de l’échelle intégrale Lagrangienne et l’énergie cinétique de la turbulence du fluide vue par les particules. / In this thesis, performed in IMFT, we are interested in the turbulent gas-solid flows and more specifically, in the phenomenon of turbulence modulation which is the modification of the structure of the turbulence due to the solid particles. This mechanism is crucial in flows with high particle mass-loadings. In this work, we considered a homogeneous isotropic turbulence without gravity kept stationary with stochastic type forcing. Discrete particles are tracked individually in Lagrangian manner. Turbulence of the carrier phase is obtained by using DNS. The particles are spherical, rigid and of a diameter smaller than the smallest scales of turbulence. Their density is very large in comparison to the density of the fluid. In this configuration the only force acting on the particles is the drag force. Volume fraction of particles is very small and inter-particle interactions are not considered. To model this type of flow, a stochastic approach is used where the fluid element accel- eration is modeled using stochastic Langevin equation. The originality in this work is an additional term in the stochastic equation which integrates the effect of the particles on the trajectory of fluid elements. To model this term, we proposed two types of modeling: a mean drag model which is defined using the mean velocities from the mean transport equations of the both phases and an instantaneous drag term which is written with the help of the Mesoscopic Eulerian Approach. The closure of the models is based on the Lagrangian auto- correlation function of the fluid velocity and on the transport equation of the fluid kinetic energies. The models are tested in terms of the fluid-particle correlations and fluid-particle turbulent drift velocity. The results show that the mean model, simple, takes into account the principal physical mechanism of turbulence modulation. However, practical closure problem is brought forward to the Lagrangian integral scale and the fluid kinetic energy of the fluid turbulence viewed by the particles.
9

Simulation numérique et modélisation de l'assimilation de substrat par des microorganismes dans un écoulement turbulent / Numerical Simulation and modelling of substrate assimilation by microorganisms in a turbulent flow

Linkes, Marion 06 December 2012 (has links)
Une des problématiques majeures dans l’industrie des bioprocédés réside dans l’extrapolation des procédés biologiques à grande échelle. On observe généralement à l’échelle industrielle des écarts de rendement de croissance de la biomasse, ainsi que la formation de sous-produits comparativement à l’échelle du laboratoire. La formation de gradients de concentration à l’échelle des bioréacteurs est souvent évoquée. Dans ce travail, les interactions entre micromélange et assimilation du substrat sont abordées à l’échelle du microorganisme. Un modèle couplant transport et assimilation à l’échelle d’un microorganisme est proposé. L’existence de régimes physique et biologique, limitant l’assimilation du substrat est mise en lumière. Une approche basée sur le suivi Lagrangien de particules dans un champ de turbulence homogène isotrope est ensuite retenue. Les effets des hétérogénéités de concentration vues par les microorganismes, sont traduits à l’échelle de la population entière. Une loi analytique permettant de construire la distribution de flux reçus par les microorganismes à partir de la distribution de concentration en substrat dans le fluide, est proposée. Partant de cette distribution de concentrations vues, l’adjonction d’un modèle métabolique simplifié permet d’expliquer les baisses de vitesse spécifiques de croissance et la formation de sous-produits observées expérimentalement. Enfin, de premiers résultats sur le couplage inverse biologique sont présentés. L’effet des microorganismes sur le champ de concentration est caractérisé et une étude paramétrique sur les propriétés dynamiques et biologiques est réalisée. / The scale-up of biological process is a critical issue in the bioprocess industry. When passing from a laboratory to an industrial scale, the conversion yield of substrate into biomass is often overestimated and by-products are formed. Different existing works attempt to predict the effect of mixing on biomass growth and the emergence of substrate concentration gradients at the reactor scale are a first explanation of the degraded performances. In this work the interactions between micro-mixing and substrate assimilation are addressed at the microorganism scale. A coupled transport-assimilation model is proposed for an isolated microorganism. The emergence of physical and biological regimes limiting the substrate assimilation is enlightened. An approach based on the Lagrangian tracking of microorganisms in a homogeneous isotropic turbulent field is then chosen. The effects of local concentration heterogeneities seen by microorganisms are observed at the population scale. An analytical expression is proposed for the assimilated substrate flux distribution by the microorganisms, based on the substrate concentration distribution in the fluid. From these concentrations encountered by microorganisms, we coupled a simplified metabolic model that explains the decreased specific growth rate, and the by-products formation often observed in many experiments. Finally, first results on the biological two-way coupling are proposed. The effect of microorganisms on the substrate field is characterised and a parametric study on the dynamics as well as biological parameters is realised.
10

Modélisation et simulation de la dispersion turbulente et du dépôt de gouttes dans un canal horizontal / Modeling of the droplets turbulent dispersion and deposition in a horizontal channel

Neiss, Coraline 03 October 2013 (has links)
Ce travail de thèse est consacré à l'étude des écoulements diphasiques dispersés turbulents gaz/gouttes et plus particulièrement à la modélisation du phénomène de dépôt de gouttes en canal horizontal, dont la compréhension et la prédiction sont essentielles pour de nombreuses applications industrielles. Les gouttes sont supposées de taille plus petite que les échelles de longueur caractéristiques de l'écoulement de gaz turbulent, avec une masse volumique grande devant celle de la phase continue, les forces qui agissent sur les gouttes se limitent ainsi à la traînée, à la poussée d'Archimède et à la gravité. Le taux de présence de la phase dispersée est suffisamment important pour tenir compte de l'influence des gouttes sur la turbulence du gaz (couplage à deux sens), mais suffisamment faible pour pouvoir négliger les collisions entre les gouttes. En écoulement horizontal, le dépôt des gouttes en paroi est piloté par deux mécanismes principaux qui agissent en parallèle : la gravité et la diffusion turbulente/vol libre. Cette physique du dépôt est déclinée en deux volets, avec une première étude à l'échelle 3D locale et une seconde étude à l'échelle système 1D. Dans chacune de ces approches, un modèle pour la vitesse de dépôt de gouttes en paroi est développé, puis validé par comparaison à des données expérimentales. Le modèle de dépôt local, établi sous l'hypothèse d'un film liquide infiniment mince et absorbant, est implanté dans le code de simulation numérique NEPTUNE_CFD, puis validé par comparaison aux données expérimentales de Namie & Ueda, qui étudient le dépôt des gouttes en canal horizontal. Une analyse des équations de transport des principales grandeurs moyennes de l'écoulement, ainsi que des transferts d'énergies entre phases, est menée afin de mettre en évidence les phénomènes de couplage et leurs influences sur la turbulence de la phase continue. Le modèle unidimensionnel, développé dans le cadre d'un besoin industriel, est implanté dans le code CATHARE-3 et est confronté aux données de l'expérience REGARD du CEA Grenoble. / Droplets dispersion and deposition in turbulent duct flows are important processes, occurring in numerous environmental and industrial applications. This work is devoted to the study of gas-droplets flows and, more particularly, the objective is to improve the droplets deposition modeling in horizontal flows. Droplets are supposed to be smaller than the Kolmogorov scale, with a density large compared to the density of the gas phase. Under these assumptions, the motion of a droplet is considered to be governed by the drag force, the buoyancy force, and the gravity. Dilute incompressible and isothermal gas-droplets flows are studied, so inter-particle collisions are neglected but two-way coupling is retained, which means that modulation of turbulence by the particles is accounted for. In horizontal flow, droplets reach the wall under the actions of the gravitational settling and the turbulent diffusion. Two approaches will be used in developing this deposition physics with a first study at the 3D local scale and a second one at the 1D scale, realized for an industrial need. For each case, a model is developed for the mean deposition velocity of the droplets, with is implemented in a numerical simulation tool and then validated by comparison to experimental data. The local deposition model is established under the assumptions that the liquid film is extremely thin and perfectly absorbing and is implemented in the Neptune_CFD code. The experience carried out by Namie & Ueda, which consist in small droplets deposition from a turbulent dispersed flow in a horizontal rectangular duct, is simulated. An analysis of the interphase transfer terms in the kinetic energy equations shows the interactions between the dispersed phase and the continuous one and the impact of these phenomena on the turbulence of the gas phase is pointed out. The 1D deposition model is developed for the CATHARE-3 code and experimental data from the REGARD facility of the CEA Grenoble are used for validation.

Page generated in 0.0679 seconds