Spelling suggestions: "subject:"type II"" "subject:"mype II""
1 |
The effects of troglitazone on hepatic gene expressionDavies, Gerald F. January 2003 (has links)
No description available.
|
2 |
Nuclear magnetic resonance and nuclear quadrupole resonance study of atomic motion in YBa���Cu���O���Klein, Susan P. 25 October 1995 (has links)
Graduation date: 1996
|
3 |
Études hyperfréquence et ultrasonore du niobium, supraconducteur conventionnel de type IIImhoff, Marjorie. January 2000 (has links)
Thèses (M.Sc.)--Université de Sherbrooke (Canada), 2000. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
|
4 |
Compositional analysis of diffused Nb₃Sn layersSmathers, David Bird. January 1900 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1982. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
5 |
Some properties of type II superconductorsLowell, J. January 1966 (has links)
No description available.
|
6 |
Some properties of superconductorsFrench, Robin A. January 1966 (has links)
No description available.
|
7 |
Crystallographic studies of DNA gyrase B proteinTsai, Francis T. F. January 1996 (has links)
No description available.
|
8 |
Structural studies of the inner-membrane platform of the bacterial type II secretion systemZhang, Hui January 2018 (has links)
The type II secretion system (T2SS) is widespread in Gram-negative bacteria that cause disease in animals and plants. In human and animal pathogens toxins are secreted (e.g. cholera toxin) and in plant pathogens lytic enzymes that breakdown the plant cell wall are exported in to the extracellular milieu (e.g. pectate lyase). Structurally the T2SS comprises at least 11 core proteins that form three major subassemblies spanning the inner-membrane, periplasmic space and outer-membrane: (i) the inner-membrane platform and associated cytoplasmic ATPase (E); (ii) the pseudopilus, which consists of five pseudopilins, G to K; and (iii) a large, pore-forming outer-membrane complex secretin D. The inner-membrane platform comprises three single transmembrane helix proteins, and one three transmembrane helix protein, OutF. The evidence from cryo-electron microscopy on the related type IVa pilus machine (T4PS) places the protein corresponding to OutF at the centre of this platform. This platform is responsible for assembling the pilus and for communicating between the periplasm and the cytoplasmic ATPase. To date, no high-resolution structure of a full-length OutF/PilC family protein is available. A low-resolution electron microscopy reconstruction of isolated PilG (PilC ortholog from Neisseria meningitides T4PS) showed a tetrameric two lobed structure. Here I report the results of studying the structure of the inner-membrane protein OutF from Dickeya dadantii and the complete inner-membrane platform comprising 9 proteins: OutEFGHIJKLM. This work involved cloning the corresponding operon, purifying the proteins, and using crystallography and electron microscopy. Key results reported here are the crystal structure of the first cytoplasmic domain of Dickeya dadantii, OutF65-172 and a preliminary three-dimensional model of the Dickeya dadantii inner-membrane platform. This model, and higher-resolution models to come, will provide valuable information about the oligomeric state, and arrangement of the inner-membrane proteins. These studies will help us to understand how the type II secretion system works.
|
9 |
Interactions between exeA and peptidoglycan in the type II secretion system of <i>aeromonas hydrophila</i>Li, Gang 27 May 2009
<i>Aeromonas hydrophila</i> uses the type II secretion system to transport protein toxins across the outer membrane. The trans-envelope system is comprised of more than ten proteins, including ExeA and ExeB, which form a complex in the inner membrane and are required for assembly of the ExeD secretion channel multimer, called the secretin, into the outer membrane. A putative peptidoglycan binding domain (Pfam protein families database number PF01471) is present in the periplasmic region of ExeA (pExeA), leading to the hypothesis that ExeA generates gaps in peptidoglycan, a barrier for trans-envelope transport and apparatus assembly, to allow ExeD to assemble into the outer membrane.<p>
In this study, interactions between ExeA and peptidoglycan were examined both <i>in vivo</i> and <i>in vitro</i>. Wild type ExeA, but not the mutants containing substitution mutations of three highly conserved amino acid residues in the putative peptidoglycan binding domain, was cross-linked to peptidoglycan in vivo with DTSSP. Furthermore, the presence of wild type ExeA was also required for co-crosslinking of ExeB and ExeC to peptidoglycan. <i>In vitro</i> cosedimentation revealed that purified pExeA was able to bind to highly purified peptidoglycan. The protein assembled into large multimers in the presence of peptidoglycan fragments, as shown in cross-linking and co-gel filtration experiments. The requirement of peptidoglycan for multimerization was abrogated when the protein was incubated at temperatures above 25 °C. Two pExeA constructs, which disrupted the putative peptidoglycan binding domain, greatly reduced the cosedimentation, accompanied by decreased multimerization in the presence of peptidoglycan fragments. These results provide evidence that the putative peptidoglycan binding domain of ExeA is involved in physical contact with peptidoglycan. The interactions cause ExeA to multimerize, possibly forming a ring-like structure on the peptidoglycan, to generate a gap large enough to accommodate the secretion apparatus and/or to form an assembly scaffold.<p>
The putative peptidoglycan binding domain of ExeA was also analyzed by comparing its amino acid sequence with that of other homologues. The highly conserved amino acid residues were found to cluster at one pocket on the surface in the crystal structure of hydrolase metallo (Zn) DD-peptidase that also contains this domain. We propose that this pocket is the binding site for the peptidoglycan ligand.
|
10 |
Interactions between exeA and peptidoglycan in the type II secretion system of <i>aeromonas hydrophila</i>Li, Gang 27 May 2009 (has links)
<i>Aeromonas hydrophila</i> uses the type II secretion system to transport protein toxins across the outer membrane. The trans-envelope system is comprised of more than ten proteins, including ExeA and ExeB, which form a complex in the inner membrane and are required for assembly of the ExeD secretion channel multimer, called the secretin, into the outer membrane. A putative peptidoglycan binding domain (Pfam protein families database number PF01471) is present in the periplasmic region of ExeA (pExeA), leading to the hypothesis that ExeA generates gaps in peptidoglycan, a barrier for trans-envelope transport and apparatus assembly, to allow ExeD to assemble into the outer membrane.<p>
In this study, interactions between ExeA and peptidoglycan were examined both <i>in vivo</i> and <i>in vitro</i>. Wild type ExeA, but not the mutants containing substitution mutations of three highly conserved amino acid residues in the putative peptidoglycan binding domain, was cross-linked to peptidoglycan in vivo with DTSSP. Furthermore, the presence of wild type ExeA was also required for co-crosslinking of ExeB and ExeC to peptidoglycan. <i>In vitro</i> cosedimentation revealed that purified pExeA was able to bind to highly purified peptidoglycan. The protein assembled into large multimers in the presence of peptidoglycan fragments, as shown in cross-linking and co-gel filtration experiments. The requirement of peptidoglycan for multimerization was abrogated when the protein was incubated at temperatures above 25 °C. Two pExeA constructs, which disrupted the putative peptidoglycan binding domain, greatly reduced the cosedimentation, accompanied by decreased multimerization in the presence of peptidoglycan fragments. These results provide evidence that the putative peptidoglycan binding domain of ExeA is involved in physical contact with peptidoglycan. The interactions cause ExeA to multimerize, possibly forming a ring-like structure on the peptidoglycan, to generate a gap large enough to accommodate the secretion apparatus and/or to form an assembly scaffold.<p>
The putative peptidoglycan binding domain of ExeA was also analyzed by comparing its amino acid sequence with that of other homologues. The highly conserved amino acid residues were found to cluster at one pocket on the surface in the crystal structure of hydrolase metallo (Zn) DD-peptidase that also contains this domain. We propose that this pocket is the binding site for the peptidoglycan ligand.
|
Page generated in 0.0229 seconds