• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CD4+ T cell mediated tumor immunity following transplantation of TRP-1 TCR gene modified hematopoietic stem cells

Ha, Sung Pil 10 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Immunotherapy for cancer has held much promise as a potent modality of cancer treatment. The ability to selectively destroy diseased cells and leave healthy cells unharmed has been the goal of cancer immunotherapy for the past thirty years. However, the full capabilities of cancer immunotherapies have been elusive. Cancer immunotherapies have been consistently hampered by limited immune reactivity, a diminishing immune response over time, and a failure to overcome self-tolerance. Many of these deficiencies have been borne-out by immunotherapies that have focused on the adoptive transfer of activated or genetically modified mature CD8+ T cells. The limitations inherent in therapies involving terminally differentiated mature lymphocytes include limited duration, lack of involvement of other components of the immune system, and limited clinical efficacy. We sought to overcome these limitations by altering and enhancing long-term host immunity by genetically modifying then transplanting HSCs. To study these questions and test the efficiency of gene transfer, we cloned a tumor reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen TRP-1, then constructed both a high expression lentiviral delivery system and a TCR Tg expressing the same TCR genes. We demonstrate with both mouse and human HSCs durable, high-efficiency TCR gene transfer, following long-term transplantation. We demonstrate the induction of spontaneous autoimmune vitiligo and a TCR-specific TH1 polarized memory effector CD4+ T cell population. Most importantly, we demonstrate the destruction of subcutaneous melanoma without the aid of vaccination, immune modulation, or cytokine administration. Overall, these results demonstrate the creation of a novel translational model of durable lentiviral gene transfer, the induction of spontaneous CD4+ T cell immunity, the breaking of self-tolerance, and the induction of anti-tumor immunity.

Page generated in 0.4371 seconds