• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desenvolvimento de método de recuperação de 131I no processo de produção de 99Mo pela fissão de 235U / Development of a recovery method of 131I in the 99Mo process through the fission of 235U

Bignardi, Aline Moraes Teixeira 24 June 2013 (has links)
O 131I é um radioisótopo de iodo amplamente utilizado em medicina nuclear, pode ser utilizado tanto para diagnóstico quanto para tratamento devido às suas características físicas de decaimento - e sua elevada emissão de raios-y. Sua produção no IPEN é realizada utilizando um reator nuclear a partir da reação indireta: 130Te (n,y) 131mTe 131Te 131I, onde são irradiados alvos contendo Te. Pode também ser produzido via produto de fissão de 235U, onde, o 235U irradiado produz cerca de 300 elementos diferentes, entre eles o 131I. O 131I produzido nesse método apresenta altas atividade específica e concentração radioativa, o que facilita a produção de compostos marcados com o radionuclídeo. O objetivo deste trabalho é desenvolver um método de recuperação de 131I no processo de produção de 99Mo pela rota de dissolução ácida de alvos de 235U, com a qualidade necessária para ser utilizado em Medicina Nuclear. O 131I encontra-se em 2 fases no processo, tanto na fase gasosa produzida na dissolução ácida dos alvos de U metálico e a menor parte em solução. Foram utilizados diversos materiais para captura e recuperação de 131I nas 2 fases do processo, a fase gasosa e a solução de dissolução dos alvos de U. Foram testadas colunas de alumina com Cu, alumina ácida com Cu, nanoesferas de Ag, cartuchos aniônicos, resina aniônica, colunas de carvão ativado, microesferas de Ag e microesferas de Cu. Soluções contendo 131I em NaOH 0,1 mol.L-1 foram percoladas pelos materiais e os eluídos foram analisados em calibrador de dose. Foi também estudada a precipitação de AgI e dissolução desse precipitado em NH4OH 0,1 mol L-1 e Na2S2O3 5%. Dentre os testes realizados, a princípio, os resultados de recuperação variaram de acordo com o material, o carvão ativado apresentou rendimento de recuperação entre 42% a 83%. Já o rendimento de recuperação da coluna de alumina com Cu variou de 20% a 85%. Os testes com nanoesferas de Ag apresentaram rendimento de recuperação de 26% utilizando NaOH 0,1 mol L-1 e 72% utilizando Na2S2O3 como eluentes. Testes com cartuchos aniônicos apresentaram os melhores resultados com uma porcentagem de recuperação de 81 a 90%. Testes utilizando 131I na sua forma gasosa apresentaram uma retenção de 66,45% e não foram realizados testes para recuperação do 131I retido. Nos testes utilizando precipitação de AgI a porcentagem de retenção de 131I foi de 100%. É possível concluir que os cartuchos aniônicos e a precipitação de AgI foram as melhores opções para a retenção de 131I, e as colunas de alumina com Cu tem um grande potencial para eluição do radionuclídeo 131I na forma química adequada. / 131I is an iodine radioisotope widely used in nuclear medicine that can be used either for diagnostic or for treatment due to its physical decay by - and its high emission of -rays. It is produced at IPEN using the indirect reaction: 130Te(n,)131mTe 131Te 131I where TeO2 targets are irradiated in a Nuclear Reactor. There is also the possibility of producing 131I by the fission of 235U, where about 300 different elements are produced together with 131I. The 131I produced through this method presents high specific activity and radioactive concentration suitable for the labeling of molecules. The aim of this work was to develop a recovery method of 131I with the required quality to be used in Nuclear Medicine in the 99Mo production process through the route of acid dissolution of metallic 235U targets. 131I can appear in two phases of the process, both in the gaseous phase produced during the dissolution of metallic U targets and in the dissolution solution. This work studied the recovery of 131I in these two phases. Several materials were used for the capture and recovery of 131I at the two phases of the process, the gaseous one and the solution of dissolution of U targets. Columns of alumina with Cu, acid alumina with Cu, Ag microspheres, Cu microspheres, Ag nanospheres, anionic cartridges, Ag cartridges, anion exchange resin and activated charcoal columns were tested. Solutions containing 131I in 0.1 mol.L-1 NaOH were percolated through the materials and the eluted solutions were analyzed in a dose calibrator. The precipitation of AgI was also studied wth further dissolution of this precipitate with 0.1 mol L-1 NH4OH and 5% Na2S2O3. The recovery results varied according to the material, activated charcoal showed recovery yields between 42% and 83% but the recovery yield of the alumina column with Cu ranged from 20% to 85%. Tests with Ag nanospheres showed recovery yield of 26% using 0.1 mol L-1NaOH and 72% for Na2S2O3. Tests with anionic cartridges showed the best results with a recovery percentage ranging between 81 to 90%. Tests using 131I in the gaseous phase presented retention of 66.45% and its elution was not studied. The experiments with the AgI precipitation showed total retention of 131I. It can be concluded that the anionic cartridges and the precipitation of AgI have higher affinity for the retention of 131I, and alumina columns with Cu have great potential for its elution in a suitable chemical form.
2

Desenvolvimento de método de recuperação de 131I no processo de produção de 99Mo pela fissão de 235U / Development of a recovery method of 131I in the 99Mo process through the fission of 235U

Aline Moraes Teixeira Bignardi 24 June 2013 (has links)
O 131I é um radioisótopo de iodo amplamente utilizado em medicina nuclear, pode ser utilizado tanto para diagnóstico quanto para tratamento devido às suas características físicas de decaimento - e sua elevada emissão de raios-y. Sua produção no IPEN é realizada utilizando um reator nuclear a partir da reação indireta: 130Te (n,y) 131mTe 131Te 131I, onde são irradiados alvos contendo Te. Pode também ser produzido via produto de fissão de 235U, onde, o 235U irradiado produz cerca de 300 elementos diferentes, entre eles o 131I. O 131I produzido nesse método apresenta altas atividade específica e concentração radioativa, o que facilita a produção de compostos marcados com o radionuclídeo. O objetivo deste trabalho é desenvolver um método de recuperação de 131I no processo de produção de 99Mo pela rota de dissolução ácida de alvos de 235U, com a qualidade necessária para ser utilizado em Medicina Nuclear. O 131I encontra-se em 2 fases no processo, tanto na fase gasosa produzida na dissolução ácida dos alvos de U metálico e a menor parte em solução. Foram utilizados diversos materiais para captura e recuperação de 131I nas 2 fases do processo, a fase gasosa e a solução de dissolução dos alvos de U. Foram testadas colunas de alumina com Cu, alumina ácida com Cu, nanoesferas de Ag, cartuchos aniônicos, resina aniônica, colunas de carvão ativado, microesferas de Ag e microesferas de Cu. Soluções contendo 131I em NaOH 0,1 mol.L-1 foram percoladas pelos materiais e os eluídos foram analisados em calibrador de dose. Foi também estudada a precipitação de AgI e dissolução desse precipitado em NH4OH 0,1 mol L-1 e Na2S2O3 5%. Dentre os testes realizados, a princípio, os resultados de recuperação variaram de acordo com o material, o carvão ativado apresentou rendimento de recuperação entre 42% a 83%. Já o rendimento de recuperação da coluna de alumina com Cu variou de 20% a 85%. Os testes com nanoesferas de Ag apresentaram rendimento de recuperação de 26% utilizando NaOH 0,1 mol L-1 e 72% utilizando Na2S2O3 como eluentes. Testes com cartuchos aniônicos apresentaram os melhores resultados com uma porcentagem de recuperação de 81 a 90%. Testes utilizando 131I na sua forma gasosa apresentaram uma retenção de 66,45% e não foram realizados testes para recuperação do 131I retido. Nos testes utilizando precipitação de AgI a porcentagem de retenção de 131I foi de 100%. É possível concluir que os cartuchos aniônicos e a precipitação de AgI foram as melhores opções para a retenção de 131I, e as colunas de alumina com Cu tem um grande potencial para eluição do radionuclídeo 131I na forma química adequada. / 131I is an iodine radioisotope widely used in nuclear medicine that can be used either for diagnostic or for treatment due to its physical decay by - and its high emission of -rays. It is produced at IPEN using the indirect reaction: 130Te(n,)131mTe 131Te 131I where TeO2 targets are irradiated in a Nuclear Reactor. There is also the possibility of producing 131I by the fission of 235U, where about 300 different elements are produced together with 131I. The 131I produced through this method presents high specific activity and radioactive concentration suitable for the labeling of molecules. The aim of this work was to develop a recovery method of 131I with the required quality to be used in Nuclear Medicine in the 99Mo production process through the route of acid dissolution of metallic 235U targets. 131I can appear in two phases of the process, both in the gaseous phase produced during the dissolution of metallic U targets and in the dissolution solution. This work studied the recovery of 131I in these two phases. Several materials were used for the capture and recovery of 131I at the two phases of the process, the gaseous one and the solution of dissolution of U targets. Columns of alumina with Cu, acid alumina with Cu, Ag microspheres, Cu microspheres, Ag nanospheres, anionic cartridges, Ag cartridges, anion exchange resin and activated charcoal columns were tested. Solutions containing 131I in 0.1 mol.L-1 NaOH were percolated through the materials and the eluted solutions were analyzed in a dose calibrator. The precipitation of AgI was also studied wth further dissolution of this precipitate with 0.1 mol L-1 NH4OH and 5% Na2S2O3. The recovery results varied according to the material, activated charcoal showed recovery yields between 42% and 83% but the recovery yield of the alumina column with Cu ranged from 20% to 85%. Tests with Ag nanospheres showed recovery yield of 26% using 0.1 mol L-1NaOH and 72% for Na2S2O3. Tests with anionic cartridges showed the best results with a recovery percentage ranging between 81 to 90%. Tests using 131I in the gaseous phase presented retention of 66.45% and its elution was not studied. The experiments with the AgI precipitation showed total retention of 131I. It can be concluded that the anionic cartridges and the precipitation of AgI have higher affinity for the retention of 131I, and alumina columns with Cu have great potential for its elution in a suitable chemical form.
3

Measurement of prompt gamma-ray energy distribution and multiplicity of U-235 following thermal fission using STEFF

Murray, Elizabeth January 2015 (has links)
More accurate knowledge of gamma-ray heating in nuclear reactors has beenlisted as a high priority request by the NEA [23]. In response to this the SpecTrometerfor Exotic Fission Fragments (STEFF), a 2-velocity, 2-energy spectrometer assembledby the Manchester Fission Group has been used to take measurements ofprompt gamma-rays from thermal fission of U-235. Through the procedures discussed,the average total gamma-ray energy and average multiplicity were determined to be8.40 +/- 0.26 MeV and 7.74 +/- 0.12, respectively. The single energy spectrum for eachindividual detector has been determined as well as the total energy distribution. A new parallel plate avalanche counter has been tested for its potential to improvethe timing resolution of the current STEFF stop detector. The timing resolution ofthe new detector is found to be 337 ps, an improvement of 75 % on the previous stopdetector. The pulse shapes created by a fission fragment in an ionisation chamber havebeen investigated. The relationship with fragment atomic number has been tested byemploying the Lohengrin spectrometer to separate fragments by mass so that theirindividual pulse shapes can be studied. Evaluation work has been performed at the NNL, Cumbria, under the supervisionof Dr Robert Mills. Experimental data determined from the spontaneous fission ofCf-252 has been extracted and evaluation techniques performed upon it so that thedata can be considered for inclusion within an evaluated nuclear database.
4

The Calibration of a Fission Chamber at 14 MeV: Accelerator based Neutron Beam Detection

Braid, Ryan A. January 2010 (has links)
No description available.
5

Delayed neutrons from the neutron irradiation of ²³⁵U

Heinrich, Aaron David 10 October 2008 (has links)
A series of experiments was performed with the Texas A&M University Nuclear Science Center Reactor (NSCR) to verify ²³⁵U delayed neutron emission rates. A custom device was created to accurately measure a sample's pneumatic flight time and the Nuclear Science Center's (NSC's) pneumatic transfer system (PTS) was redesigned to reduce a sample's pneumatic flight time from over 1,600 milliseconds to less than 450 milliseconds. Four saturation irradiations were performed at reactor powers of 100 and 200 kW for 300 seconds and one burst irradiation was performed using a $1.61 pulse producing 19.11 MW-s of energy. Experimental results agreed extremely well with those of Keepin. By comparing the first ten seconds of collected data, the first saturation irradiation deviated ~1.869% with a dead time of 2 microseconds, while the burst irradiation deviated ~0.303% with a dead time of 5 microseconds. Saturation irradiations one, three and four were normalized to the initial count rate of saturation irradiation two to determine the system reproducibility, and deviated ~0.449%, ~0.343% and ~0.389%, respectively.

Page generated in 0.1838 seconds