• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Tools for Conceptual Design of a Wildland Firefighting UAV

Newton, Nicholas James 03 August 2023 (has links)
The current uses of unmanned aerial vehicles (UAVs) in wildland firefighting center around mapping, scouting, and firing operations. These operations and additional operations are often held back by lack of range and lift capacity of current UAV options. Software design tools were developed in this research to aid in designing a UAV for wildland firefighting. The tools help create a mission profile, estimate the mass of the UAV, select a motor and rotor, select a battery, and generate and analyze a finite element (FE) sector model. These tools leverage parametric analysis and studying existing hardware to create a design. The FE model is generated based on the mission profile, a motor and rotor, and battery as design parameters and a set of design variables. The tools developed for creating a mission profile, estimating mass, selecting a motor and rotor, and selecting a battery successfully aid the preliminary design of an octocopter, hexacopter, and quadcopter. The FE tool was designed around an octocopter's geometry, which leads to complications in generating FE models for a hexacopter or quadcopter. Recommendations were made for altering the FE tool to account for hexacopters and quadcopters. Other recommendations were made to support future work in creating an optimized design of a wildland firefighting UAV. / Master of Science / The use of multirotor UAVs in various industries is rapidly expanding. One industry that currently uses UAVs but is limited in their capabilities is wildland firefighting. Wildland firefighters use UAVs for scouting, mapping, and firing operations. Scouting includes finding road access to the fire, finding water sources, searching for spot fires, and many other applications. Mapping is typically done to understand the size of the fire. Firing operations are conducted to start small, controlled fires to remove fuel from the fires path. However, these operations as well as future applications of UAVs are often limited by the flight time and the lifting capabilities current UAV options offer. Tools were developed in this research to create a preliminary design of a UAV for wildland firefighting. The design parameters and variables of the UAV design are outlined throughout the tools. The tools allow for compiling mission requirements, selecting motors/rotors and a battery to use in the UAV, and a preliminary structural analysis of the UAV design. The preliminary structural analysis includes extracting stresses, strains, and displacements experienced through a simplified mission as well as the natural frequencies of the finite element sector model. The design of octocopters, hexacopters, and quadcopters were explored using the set of design tools. The tools were successfully in selecting components for each style of UAV and at the preliminary structural analysis of the octocopter design. However, the structural analysis was not able to be conducted for the hexacopter and quadcopter design due to geometric conditions in the finite element model.
2

Design and Development of Low-cost Multi-function UAV Suitable for Production and Operation in Low Resource Environments

Standridge, Zachary Dakotah 06 July 2018 (has links)
A new flying wing design has been developed at the Unmanned Systems Lab (USL) at Virginia Tech to serve delivery and remote sensing applications in the developing world. The fully autonomous unmanned aerial vehicle (UAV), named EcoSoar, was designed with the goal of creating a business opportunity for local entrepreneurs in low-resource communities. The system was developed in such a way that local fabrication, operation, and maintenance of the aircraft are all possible. In order to present a competitive financial model for sustained drone services, EcoSoar is made with reliable low-cost materials and electronics. This paper lays out the rapid prototyping and flight experiment efforts that went into polishing the design, test results from an EcoSoar centered drone workshop in Kasungu, Malawi, and finally a range optimization study with flight test validation. / Master of Science / A new humanitarian drone has been developed at the Unmanned Systems Lab (USL) at Virginia Tech. The unmanned aerial vehicle (UAV), named EcoSoar, was designed with the goal of creating a business opportunity for local entrepreneurs in low-resource communities. In order to be a viable solution in the developing world EcoSoar utilizes customizable 3D-printed parts and wings made from cheap materials like posterboard and packing tape. In addition, tools for building the drone have been developed in such a way that anyone can learn to construct and operate EcoSoar regardless of experience. This paper lays out the engineering efforts that went into the design, lessons learned from an EcoSoar-centered workshop in Kasungu, Malawi, and finally offers an upgraded design.

Page generated in 0.0409 seconds