• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interfacial Properties of Ultrathin- Film Metal Electrodes: Studies by Combined Electron Spectroscopy and Electrochemistry

Cummins, Kyle 2012 May 1900 (has links)
A pair of studies investigating the deposition and surface chemical properties of ultrathin metal films were pursued: (i) Pt-Co alloys on Mo(110); and (ii) Pd on Pt(111). Experimental measurement was based on a combination of electron spectroscopy (low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy, and low energy electron diffraction) and electrochemistry (voltage efficiency, voltammetry, and coulometry). Mixed-metal preparation of Pt-Co films by thermal vapor deposition (TVD) resulted in a thin-film binary alloy. Careful analysis revealed a substantial divergence between the composition at the interface and that in the interior. This outcome was observed for all compositions and allowed for the construction of a ?surface phase diagram?. The proclivities of the alloys of pre-selected compositions towards enhanced catalysis of the oxygen-reduction reaction were assessed in terms of their voltage efficiencies, as manifested by the open-circuit potential (OCP) in O2-saturated dilute sulfuric acid electrolyte. The particular alloy surface, Pt3Co (XPt=3,XCo=1), whether from the thin film or a bulk single crystal, exhibited the highest OCP, a significant improvement over pure Pt but still appreciably lower than the thermodynamic limit. Under test conditions, the degradation of thusly-prepared films was primarily due to Co corrosion. Ultrathin Pd films on well-defined Pt(111) surfaces, with coverages from 0.5 to 8 monolayers (ML), were prepared by surface-limited redox replacement reaction (galvanic exchange) of underpotentially deposited Cu. Spectroscopic data revealed that films prepared in this manner are elementally pure, pseudomorphic to the substrate, and stable, independent of the surface coverage (?) of palladium. Analysis of the voltammetric profiles in the hydrogen evolution region revealed unique properties of hydrogen adsorption unseen in bulk electrodes. Notably, at 1 ML coverage, a step-free film was produced that did not exhibit hydrogen absorption. At higher coverages, digital (layer-by-layer) deposition gave way to 3D islands in a Stranski- Krastanov growth mode; under these conditions, onset of bulk-like behavior was observed. This method makes possible the synthesis of well-ordered noble-metal films in the absence of high-temperature treatment
2

Příprava vzorků pro elektrochemické studium povrchů – transport vzorku mezi UHV a elektrochemickým prostředím / UHV-EC transfer system for electrochemical surface science studies

Jakub, Zdeněk January 2016 (has links)
This thesis deals with the combined ultra-high vacuum (UHV) and electrochemical (EC) studies of selected iron oxide surfaces, namely Fe3O4(001) and -Fe2O3(012). The state-of- the-art knowledge regarding these surfaces is briefly reviewed, and importance of understanding these materials in the electrochemical environment is discussed. The design of the transfer system between UHV and EC environment is presented; individual features of the system are thoroughly discussed and the system is used for testing the stability of the Fe3O4(001) (2×2)R45° surface reconstruction in ambient conditions. The experimental results presented in this thesis show that the Fe3O4(001) (2×2)R45° reconstruction, utilized as an adatom array for single atom catalysis studies, survives both exposure to air and to liquid water, if the exposure is achieved in well-controlled fashion. Further, this thesis presents the first-ever atomic scale scanning tunneling microscopy (STM) study of the -Fe2O3(012) surface, which is important for photoelectrochemical water splitting. STM images of two surface reconstructions of the -Fe2O3(012) surface known to date are presented. A bulk terminated model of the (1×1) reconstruction is confirmed and a novel surface structure model for the (2×1) reconstructed surface is proposed. Adsorption studies of H2O and O2 on the (2×1) reconstructed surface are documented by timelapse STM.

Page generated in 0.015 seconds