• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A density functional study of actinyl containing complexes

Berard, Joel J. 07 May 2008 (has links)
Density functional (DFT) methods are first used to study 22 of the most stable solution-phase UN4O12 isomers containing uranyl nitrate, UO2(NO3)2. Based on relative free energy calculations, 4 solution (a6, a5, a8, and a1) and 5 gas-phase isomers (a1, a2, a3, b1, and b2) are identified as the strongest candidates to exist and possibly predominate within their respective environments. DFT is then applied to a new form of binucleating Schiff–base polypyrrolic macrocycles containing actinyl ions [AnO2]n+ (An = U, Np, Pu; n = 1, 2) and 3d transition metals (TM): Mn, Fe, Co, and Zn. Formal bond order evidence is provided for 24 TM to actinyl–endo–oxygen partial bond formations. Special structural cases are discussed. Redox potentials for AnVIO21/AnVO21– couples closely follow the Np > Pu > U trend seen for AnO2(H2O)52+/1+. Predictions of –1.10, 0.25, and 0.01 eV are made for U, Np, and Pu redox potentials.
2

A density functional study of actinyl containing complexes

Berard, Joel J. 07 May 2008 (has links)
Density functional (DFT) methods are first used to study 22 of the most stable solution-phase UN4O12 isomers containing uranyl nitrate, UO2(NO3)2. Based on relative free energy calculations, 4 solution (a6, a5, a8, and a1) and 5 gas-phase isomers (a1, a2, a3, b1, and b2) are identified as the strongest candidates to exist and possibly predominate within their respective environments. DFT is then applied to a new form of binucleating Schiff–base polypyrrolic macrocycles containing actinyl ions [AnO2]n+ (An = U, Np, Pu; n = 1, 2) and 3d transition metals (TM): Mn, Fe, Co, and Zn. Formal bond order evidence is provided for 24 TM to actinyl–endo–oxygen partial bond formations. Special structural cases are discussed. Redox potentials for AnVIO21/AnVO21– couples closely follow the Np > Pu > U trend seen for AnO2(H2O)52+/1+. Predictions of –1.10, 0.25, and 0.01 eV are made for U, Np, and Pu redox potentials.

Page generated in 0.0216 seconds