• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method

Webster, Keith Gordon 07 March 2007 (has links)
This thesis investigates the characteristics of a close proximity underwater explosion and its effect on a ship-like structure. Finite element model tests are conducted to verify and validate the propagation of a pressure wave generated by an underwater explosion through a fluid medium, and the transmission of the pressure wave in the fluid to a structure using the Multi-Material Arbitrary Lagrangian/Eulerian method. A one dimensional case modeling the detonation of a spherical TNT charge underwater is investigated. Three dimensional cases modeling the detonation of an underwater spherical TNT charge, and US Navy Blast Test cases modeling a shape charge and a circular steel plate, and a shape charge and a Sandwich Plate System (SPS) are also investigated. This thesis provides evidence that existing tools and methodologies have some capability for predicting early-time/close proximity underwater explosion effects, but are insufficient for analyses beyond the arrival of the initial shock wave. This thesis shows that a true infinite boundary condition, a modified Gruneisen equation of state near the charge, and the ability to capture shock without a very small element size is needed in order to provide a sufficient means for predicting early-time/close proximity underwater explosion effects beyond the arrival of the initial shock wave. / Master of Science

Page generated in 0.0737 seconds