1 |
Study on the Treatment of Paraquat-Containing Solution by H2O2/O3/UV ProcessesChen, I-Yu 23 June 2003 (has links)
This study was to investigate the treatment of paraquat-containing solutions by advanced oxidation processes (denoted by AOPs). The operation parameters conducted in semi-batch reactor were as follows: the effect of ozone dose, pH and H2O2 concentration on conversion of paraquat by adding O3, UV, O3/H2O2, UV/H2O2 and UV/O3/H2O2. Paraquat concentration: 10 ppm and 20 ppm, ozone dose: 45 g/hr and 105 g/hr, and H2O2 concentration: 0,07 g/l, 0.71 g/l and 1.127 g/l were tested.
In the first stage of pre-test, the purpose was to observe the decomposition of paraquat under various pH in order to compare the conversions by O3 and by O2, and to select the optimal pH in above AOPs.
The performances of AOPs for treating paraquat-containing solutions were found in sequence as follows: O3/H2O2, O3, UV/O3, UV/H2O2/O3, UV/H2O2 and UV. The process of O3/H2O2 not only could remove higher concentration of paraquat but also had to need a shorter residence time. The effect of parameters on the removal of paraquat by each AOPs were discussed.
The kinetics of AOPs in treatment of paraquat-containing solutions was confirmed by using half-life test. Except UV and UV/H2O2 processes nearing zero order, the apparent reaction order of O3, UV/O3, UV/O3/H2O2 and O3/H2O2 were obtained to be one.
Based on the removal and cost analysis, O3/H2O2 (O3 = 45 g/hr, H2O2 dose = 0.71 g/l) was the best process in treating paraquat solutions for the low energy and economic cost. As for the O3 and UV/O3 processes, we also recommended to be yours truly options.
|
2 |
Photochemical Degradation of ChlorobenzeneSycz, Mateusz 30 April 2013 (has links)
Persistent organic pollutants (POPs) are organic compounds of anthropogenic origin that have been linked to the development of cancer, neurobehavioural impairment, and immune system biochemical alterations. These chemicals have various industrial applications as well as acting as pesticides. Dioxins and furans are some of these compounds that are unintentionally produced in combustion and industrial processes. By definition these compounds have 4 common qualities: they are highly toxic, they are resistant to environmental degradation, they are introduced into the air and water where they travel long distances, and they accumulate in fatty tissues.
Photochemical degradation is a method that has been extensively researched in the last few decades. In the aqueous phase it has already been shown to be able to degrade a number of refractory organics, such as dioxins and furans. The ultimate products of this process tend to be carbon dioxide, water, and mineral anions. Air phase work has been also gaining attention in recent decades as a possible alternative to incineration methods in air pollution control. The advantages of photochemical degradation processes are that they can be initiated at low temperatures, are relatively low cost compared to incineration processes, environmentally benign, and have the potential for quick and complete degradation of organic compounds.
The main aim of the research is to investigate the photochemical degradation potential of PCDD/ PCDFs in gaseous air streams as a potential air pollution control technology. In order to do this, the photodegradation reaction kinetics were determined for chlorobenzene as a suitable surrogate for PCDD/PCDFs. Three different photodegradation schemes were employed: direct photolysis, UV/O3, and UV/H2O2. In addition, ozonolysis reaction rates were also determined to evaluate the effects of on the overall photodegradation rates for the UV/O3 process. Factors such as humidity levels and temperature were investigated to determine their effects on degradation rates.
Temperature and humidity were not greatly influential on the degradation rates of direct photolysis. The degradation rate of chlorobenzene at a temperature of 100°C and high humidity was noticeably reduced, but unchanged at the 10% RH and 60% RH levels for all temperatures.
Ozonolysis of chlorobenzene was negligible at 30°C for all humidity levels. Ozonolysis reactions at the 60°C and 100°C levels were higher than direct photolysis rates and in the 100°C case exceeded the UV/O3 degradation rates.
Ozone coupled with UV experiments proved to be the most destructive at the low temperature of 30°C and molar ratio of 10:1 ozone to chlorobenzene. There was a clear and positive relationship between the amount of ozone present in the reactor and the degradation rate. At lower ozone to chlorobenzene molar ratios the degradation rates were not much higher than those for direct photolysis of ozone. The 5:1 molar ratio saw a significant increase in degradation rates over the photolysis rates. The fastest degradation rate was achieved for the 10:1 molar ratio and high humidity, which was over 10 times the rate of direct photolysis. In addition, humidity had a noticeably significant positive effect in these reactions.
The effect of temperature on the UV/ozone reaction scheme was determined for the 5:1 ozone to chlorobenzene ratio. Temperature had an interesting effect on the degradation rates at higher temperatures. As the reactor temperature increased, the degradation rates from ozonolysis and UV/O3 began to converge at 60°C, ultimately leading to the ozonolysis reaction being faster than the UV/O3.
Exploratory experiments for the H2O2 scheme were performed. H2O2 had a positive influence on the degradation rate of chlorobenzene and was about 26% higher than the direct photolysis rates. However for similar conditions, the UV/O3 process had higher degradation rates as was expected from the difference in absorption values between ozone and hydrogen peroxide.
|
3 |
Treatment of leachate by combining PAC and UV/O3 processes / Kết hợp keo tụ với PAC và quá trình UV/O3 để xử lý nước rỉ rác phát sinh từ bãi chôn lấp chất thải rắnVan, Huu Tap, Trinh, Van Tuyen, Dang, Xuan Hien 15 November 2012 (has links) (PDF)
The landfill leachate is commonly treated for non-biodegradable organic matters, ammonia and colour. Experimental investigations using polyaluminium chlorite (PAC) and UV/O3 have been conducted for the determination of optimal pH value, reaction time and PAC concentration for the removal of chemical oxygen demand (COD) and colour. In pre-treatment coagulation stages, the highest COD and colour removal efficiencies were observed at the concentration of PAC ≥ 3,000 mglG1 and pH values between 7 and 8. However, these experiments also indicated significant removal efficiency for PAC starting with concentrations of 1,500 mglG1. The efficiency of COD and colour removal were approximately 30% and 70%, respectively. Similar efficiencies have been observed also during the second treatment stage where UV/O3 processes were used to treat coagulated leachate. After UV/O3 application, the pH of leachate reached the optimum value of 7.5 whereas the highest COD and colour removal efficiency was 55% and 72%, respectively, and the optimal reaction time was achieved after 80 min. / Nước rỉ rác sinh ra từ bãi chôn lấp chất thải rắn cần được xử lý các thành phần chất hữu cơ khó phân hủy sinh học, xử lí amoni và độ màu. Một số kết quả thử nghiệm về xử lý COD và màu của nước rỉ rác bằng việc sử dụng phương pháp keo tụ với PAC và quá trình UV/O3 đã được thực hiện cùng với việc xác định các giá trị pH tối ưu, thời gian phản ứng và nồng độ PAC tối ưu. Hiệu suất xử lý cao nhất đạt được khi nồng độ của PAC ≥ 3.000 mg/l, pH trong khoảng từ 7 đển 8 trong giai đoạn tiền xử lý. Tuy nhiên, hiệu quả loại bỏ COD và màu bắt đầu tăng rõ khi nồng độ PAC từ 1.500 mg/l trở lên. Hiệu quả loại bỏ COD và màu tương ứng là khoảng 30% và 70%. Các giá trị pH này phù hợp cho quá trình phản ứng UV/O3 được sử dụng sau giai đoạn keo tụ. Sau quá trình xử lý bằng hệ UV/O3, pH của nước rỉ rác tối ưu được xác định là 7,5 (hiệu suất xử lý COD và màu cao nhất tương ứng là 55% và 72%), thời gian phản ứng tối ưu là 80 phút.
|
4 |
Photochemical Degradation of ChlorobenzeneSycz, Mateusz 30 April 2013 (has links)
Persistent organic pollutants (POPs) are organic compounds of anthropogenic origin that have been linked to the development of cancer, neurobehavioural impairment, and immune system biochemical alterations. These chemicals have various industrial applications as well as acting as pesticides. Dioxins and furans are some of these compounds that are unintentionally produced in combustion and industrial processes. By definition these compounds have 4 common qualities: they are highly toxic, they are resistant to environmental degradation, they are introduced into the air and water where they travel long distances, and they accumulate in fatty tissues.
Photochemical degradation is a method that has been extensively researched in the last few decades. In the aqueous phase it has already been shown to be able to degrade a number of refractory organics, such as dioxins and furans. The ultimate products of this process tend to be carbon dioxide, water, and mineral anions. Air phase work has been also gaining attention in recent decades as a possible alternative to incineration methods in air pollution control. The advantages of photochemical degradation processes are that they can be initiated at low temperatures, are relatively low cost compared to incineration processes, environmentally benign, and have the potential for quick and complete degradation of organic compounds.
The main aim of the research is to investigate the photochemical degradation potential of PCDD/ PCDFs in gaseous air streams as a potential air pollution control technology. In order to do this, the photodegradation reaction kinetics were determined for chlorobenzene as a suitable surrogate for PCDD/PCDFs. Three different photodegradation schemes were employed: direct photolysis, UV/O3, and UV/H2O2. In addition, ozonolysis reaction rates were also determined to evaluate the effects of on the overall photodegradation rates for the UV/O3 process. Factors such as humidity levels and temperature were investigated to determine their effects on degradation rates.
Temperature and humidity were not greatly influential on the degradation rates of direct photolysis. The degradation rate of chlorobenzene at a temperature of 100°C and high humidity was noticeably reduced, but unchanged at the 10% RH and 60% RH levels for all temperatures.
Ozonolysis of chlorobenzene was negligible at 30°C for all humidity levels. Ozonolysis reactions at the 60°C and 100°C levels were higher than direct photolysis rates and in the 100°C case exceeded the UV/O3 degradation rates.
Ozone coupled with UV experiments proved to be the most destructive at the low temperature of 30°C and molar ratio of 10:1 ozone to chlorobenzene. There was a clear and positive relationship between the amount of ozone present in the reactor and the degradation rate. At lower ozone to chlorobenzene molar ratios the degradation rates were not much higher than those for direct photolysis of ozone. The 5:1 molar ratio saw a significant increase in degradation rates over the photolysis rates. The fastest degradation rate was achieved for the 10:1 molar ratio and high humidity, which was over 10 times the rate of direct photolysis. In addition, humidity had a noticeably significant positive effect in these reactions.
The effect of temperature on the UV/ozone reaction scheme was determined for the 5:1 ozone to chlorobenzene ratio. Temperature had an interesting effect on the degradation rates at higher temperatures. As the reactor temperature increased, the degradation rates from ozonolysis and UV/O3 began to converge at 60°C, ultimately leading to the ozonolysis reaction being faster than the UV/O3.
Exploratory experiments for the H2O2 scheme were performed. H2O2 had a positive influence on the degradation rate of chlorobenzene and was about 26% higher than the direct photolysis rates. However for similar conditions, the UV/O3 process had higher degradation rates as was expected from the difference in absorption values between ozone and hydrogen peroxide.
|
5 |
Treatment of leachate by combining PAC and UV/O3 processes: Research articleVan, Huu Tap, Trinh, Van Tuyen, Dang, Xuan Hien 15 November 2012 (has links)
The landfill leachate is commonly treated for non-biodegradable organic matters, ammonia and colour. Experimental investigations using polyaluminium chlorite (PAC) and UV/O3 have been conducted for the determination of optimal pH value, reaction time and PAC concentration for the removal of chemical oxygen demand (COD) and colour. In pre-treatment coagulation stages, the highest COD and colour removal efficiencies were observed at the concentration of PAC ≥ 3,000 mglG1 and pH values between 7 and 8. However, these experiments also indicated significant removal efficiency for PAC starting with concentrations of 1,500 mglG1. The efficiency of COD and colour removal were approximately 30% and 70%, respectively. Similar efficiencies have been observed also during the second treatment stage where UV/O3 processes were used to treat coagulated leachate. After UV/O3 application, the pH of leachate reached the optimum value of 7.5 whereas the highest COD and colour removal efficiency was 55% and 72%, respectively, and the optimal reaction time was achieved after 80 min. / Nước rỉ rác sinh ra từ bãi chôn lấp chất thải rắn cần được xử lý các thành phần chất hữu cơ khó phân hủy sinh học, xử lí amoni và độ màu. Một số kết quả thử nghiệm về xử lý COD và màu của nước rỉ rác bằng việc sử dụng phương pháp keo tụ với PAC và quá trình UV/O3 đã được thực hiện cùng với việc xác định các giá trị pH tối ưu, thời gian phản ứng và nồng độ PAC tối ưu. Hiệu suất xử lý cao nhất đạt được khi nồng độ của PAC ≥ 3.000 mg/l, pH trong khoảng từ 7 đển 8 trong giai đoạn tiền xử lý. Tuy nhiên, hiệu quả loại bỏ COD và màu bắt đầu tăng rõ khi nồng độ PAC từ 1.500 mg/l trở lên. Hiệu quả loại bỏ COD và màu tương ứng là khoảng 30% và 70%. Các giá trị pH này phù hợp cho quá trình phản ứng UV/O3 được sử dụng sau giai đoạn keo tụ. Sau quá trình xử lý bằng hệ UV/O3, pH của nước rỉ rác tối ưu được xác định là 7,5 (hiệu suất xử lý COD và màu cao nhất tương ứng là 55% và 72%), thời gian phản ứng tối ưu là 80 phút.
|
6 |
Kinetic Study on Degradation of Gas-phase 1, 3-Butadiene and Propylene Glycol Monomethyl Ether Acetate (PGMEA) by UV/O3Huang, Bo-Jen 24 October 2005 (has links)
This study investigates the rate kinetics for BD and PGMEA oxidation by UV/O3 process. The reactor constructs of a 100 cm x 20 cm x 85 cm (L x W x H) stainless steel chamber, in which four vertical steel plates (20 cm x 65 cm, W x H) were inserted to establish a plug flow path for the flowing gas. The reactor has a total effective volume of 170 L. Each of the five compartments of the reactor is equipped with an individual UV irradiation system with a 3.0-cm x 15-cm (ID x L) quartz sheath that housed an UV lamp, and two electric UV power inputs of 0.147 or 0.294 W/L were obtained. The gas flows perpendicularly to the UV lamps in the reactor. The influent tested VOC concentration was adjusted to about 50 ppm, and the gas flows were controlled at the individual flow rate of 60 and 120 L/min. The effects of moisture content (relative humidity, RH), ozone dosage (initial molar ratio of ozone to the tested VOC, m) and UV volumetric electric power input on the removal of the tested VOCs are investigated in the study. Also, kinetic models of the tested VOCs by photolysis, ozonation and UV/O3 have been developed and confirmed with reference to the experimental data.
According to the kinetic models, both photolysis rate and oxidation rate by UV/O3 are following the first order behavior with respect to the tested VOC concentrations which are low. The result reveals the absorbance for the reactions is weak absorbance under UV irradiation. The reaction rates are proportional to the UV electric power inputs in UV-initiated reactions. And the parameter, £i, which represents the ratio of OH radical consumption rate by the tested VOC to the total OH radical consumption rate, can be obtained by simulating the performance of experimental data of OH reactions.
The experimental results reveal that for BD oxidation with a gas space time of 85 sec and RH = 40 ¡V 99%, BD photolysis did not occur at wavelength of 185 nm with UV electric power inputs of 0.147 and 0.294 W/L. The ozonation efficiency of BD reached 90% at m = 3.5, and RH had no influence on the removal efficiency of BD. The removal efficiencies by UV/O3 process reached 90% with m = 2.2 and 1.6 for UV power inputs of 0.147 and 0.294 W/L, respectively. The addition of ozone apparently encouraged BD removal efficiency by UV/O3 process. And the enhancement of ozone dosage (m = 0.5 ¡V 4.4) would promote the decomposition of BD more effectively than the enhancements of UV power input (from 0.147 to 0.294 W L-1) and RH (from 40 to 99%).
For PGMEA photolysis in a batch reactor with volume of 1.188 L, the photolysis occurred at wavelength of 185 nm under UV irradiation. And the photolysis rate follows the first order behavior with respect to the concentration of PGMEA. But PGMEA photolysis did not occurred at UV wavelength of 254 nm. PGMEA ozonation was performed in the same batch reactor; and the removal efficiency of only 50% at m = 3.96 would take 35 min. So, PGMEA ozonation in the plug flow reactor did not be observed at the conditions of the gas space time of 85 sec and RH = 15 ¡V 99%. Besides, the photolysis of PGMEA was carried out at the above conditions. The removal efficiency of PGMEA by UV/O3 could reach 90% at the conditions of the gas space time of 170 sec, UV volumetric electric power input of 0.294 W/L and m = 2.9. And the enhancement of UV power input (from 0.147 to 0.294 W L-1) would promote the decomposition of PGMEA more effectively than the addition of ozone dosage (m = 1.05 ¡V 15.63) and RH = 15 ¡V 99%.
|
7 |
Oxidation characteristics of fluorine-, nitrogen-, and sulfur-containing organic compounds by UV/O3Chang, Ken-Lin 10 September 2007 (has links)
DMSO (dimethyl sulfoxide) is a liquid with a high boiling point (189 oC) that has been extensively utilized in various industries owing to its ability to dissolve various organic and inorganic compounds. DMSO is increasingly being adopted as a detergent or a photo-resistant stripping solvent in manufacturing semiconductors and liquid crystal displays (LCD). Therefore, DMSO is now a major component of wastewater. The biological treatment of DMSO-containing wastewater generates noxious DMS (dimethyl sulfide) and other compounds that may cause odor problems. Also having a high water solubility and a moderate boiling point (110 oC), tetrafluoro propanol (TFP) has been extensively applied in the manufacture of CD-R and DVD-R, due to its ability to dissolve organic dyes. The spin coating process produces a large amount of wastewater containing TFP. No reports have been written on the biodegradability of TFP to the authors¡¦ knowledge. Additionally, HMDS (hexamethyldisilazane) has been extensively used in life science microscopy and material science. For instance, the semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s). HMDS is classified as a carcinogen, and has an ammonia odor. Condensing incinerators have been found to be unsuitable for treating HMDS-containing waste gases, because of the formation of silicon dioxide, which blocks porous adsorbents. Biological treatment also appears to be unpromising due to its low water solubility and limited biodegradability.
This investigation evaluates the feasibility, effectiveness and oxidation characteristics of aqueous DMSO, TFP and gaseous HMDS (hexamethyldisilazane) by UV/O3 processes. A reactor made entirely of acrylic plastic with an effective volume of 10 L was employed for the reactions. The tested VOCs concentrations were adjusted to 400¡V890mg/L and 772¡V887 mg/L for DMSO and TFP, respectively, and the gas (ozone-enriched air) flow rate was controlled at 3L/min. The effects of various solution pH values (acidic, alkaline, uncontrolled), solution temperatures (26 oC, 37 oC, 48 oC and 60 oC), and UV wavelengths (254 nm and 185+254 nm) on the removal of tested VOCs were studied . Additionally, the operation costs of treating DMSO and TFP by UV/O3 were estimated.
Experimental results demonstrate that acidic conditions (pH = 3.6) favored the degradation of DMSO, and that the removal efficiency could reach 95% at a volumetric UV intensity P/V of 2.25 W/L and a reaction time of 120 min. However, alkaline conditions (pH = 9.5) favored the decomposition of TFP, with the removal efficiency reaching 95% at P/V = 2.5 W/L and a reaction time of 60 min. Both DMSO and TFP exhibited zero-order degradation kinetics when sufficient ozone was supplied. Raising the oxidation temperature did not increase the UV/O3 oxidation of TFP in the tested concentration and temperature ranges. Operation costs of the UV/O3 per unit volume of wastewater with DMSO or TFP are comparable to those of the methods described in the literature.
For the gaseous HMDS oxidation, two batch reactors with effective volumes of 1.2 and 5.8 L were used employed with the decomposition occurred under UV (185+254 nm) irradiation and UV (254 nm)/O3 processes. Tests were performed with initial HMDS concentrations of 32¡V41mg/m3 under various initial ozone dosages (O3 (mg)/HMDS (mg) =1¡V5), atmospheres (N2, O2, and air), temperatures (28 oC, 46 oC, 65 oC and 80 oC), relative humilities (20%, 50%, 65% and 99%) and volumetric UV power inputs (0.87 W/L, 1.74 W/L, 4.07 W/L and 8.16 W/L) to assess their effects on the HMDS degradation rate.
Results of this study demonstrate that the decomposition rates for the UV (185+254 nm) irradiation exceeded those for the UV (254 nm)/O3 process for all conditions. UV (185+254 nm) decompositions of HMDS displayed apparent first-order kinetics. A process with irradiation of UV (185+254 nm) to HMDS in air saturated with water at temperatures of 46¡V80 oC favors the HMDS degradation. With the above conditions and a P/V of around 8 W/L, k≈ 0.20 s−1, and over 90% of the initial HMDS was degraded in a time of 12s. The main mechanisms for the HMDS in wet air streams irradiated with UV (185+254 nm) were found to be caused by OH free radical oxidation produced from photolysis of water or O (1D) produced from photolysis of oxygen. Economic evaluation factors of UV (185+254 nm) and UV (254 nm)/O3 processes at various UV power inputs were also estimated.
|
Page generated in 0.0303 seconds