Spelling suggestions: "subject:"UV/biospectroscopy"" "subject:"UV/irspectroscopy""
21 |
Syntéza a studium vlastností derivátů tetrathiofulvalenu / The tetrathiofulvalene derivatives: Their synthesis and propertiesNejedlý, Jindřich January 2012 (has links)
The goal of the diploma thesis was to prepare a spectrum of electron-rich macrocyclic derivatives of tetrathiafulvalene (TTF), which should serve as electron donors in interactions with electron-deficient acceptor molecules. A two-step synthesis was used for their preparation. First, a non-cyclic three-segment precursor was prepared by a reaction of a thiolate TTF construction block with a bis(bromomethyl)aromate. Then, a reaction of this precursor with another molecule of bis(bromomethyl)derivative closed the macrocycle. The latter reaction produced mainly [2+2] macrocycles containing two TTF and two aromatic units. In most cases, larger [4+4] macrocycles were also isolated from the reaction mixture. Besides thiolate TTF unit two other thiolate units, one with extended TTF core and other with smaller trithiafulvene ring, were used analogically in synthesis. By a combination of three thiolate blocks and five bis(bromomethyl)aromates 11 three-segment components were prepared and these were converted to 11 structural types of macrocycles with [2+2] and 7 macrocycles with [4+4] stoichiometry. The resulting macrocycles were characterized by 1 H a 13 C NMR spectroscopy and analyzed by a gel permeation chromatography. Their structures were also confirmed by high-resolution mass spectroscopy. Interaction...
|
22 |
Cooling, Collisions and non-Sticking of Polyatomic Molecules in a Cryogenic Buffer Gas CellPiskorski, Julia Hege 21 October 2014 (has links)
We cool and study trans-Stilbene, Nile Red and Benzonitrile in a cryogenic (7K) cell filled with low density helium buffer gas. No molecule-helium cluster formation is observed, indicating limited atom-molecule sticking in this system. We place an upper limit of 5% on the population of clustered He-trans-Stilbene, consistent with a measured He-molecule collisional residence time of less than \(1 \mu s\). With several low energy torsional modes, trans-Stilbene is less rigid than any molecule previously buffer gas cooled into the Kelvin regime. We report cooling and gas phase visible spectroscopy of Nile Red, a much larger molecule. Our data suggest that buffer gas cooling will be feasible for a variety of small biological molecules. The same cell is also ideal for studying collisional relaxation cross sections. Measurements of Benzonitrile vibrational state decay results in determination of the vibrational relaxation cross sections of \(\sigma_{22} = 8x10^{-15} cm^2\) and \(\sigma_{21} = 6x10^{-15} cm^2\) for the 22 (v=1) and 21 (v=1) states. For the first time, we directly observe formation of cold molecular dimers in a cryogenic buffer gas cell and determine the dimer formation cross section to be \(\sim10^{-13} cm^2\). / Physics
|
23 |
Caracterização estrutural e espectroscópica de vidros fluorofosfatos dopados e co-dopados com Er3+ e Yb3+ / Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+Tássia de Souza Gonçalves 23 May 2014 (has links)
Atualmente, vidros e vitrocerâmicas dopados com íons terras raras trivalentes TR3+ constituem a mais importante classe de materiais para aplicações laser e em outros dispositivos ópticos, na região do infravermelho próximo e visível. Neste contexto, um dos desafios está em encontrar uma matriz hospedeira adequada que assegure qualidade óptica e um ótimo desempenho dos íons dopantes (altas seções de choque de absorção e emissão, baixa probabilidade de decaimentos não radiativos, tempos de vida de estado excitado suficientemente longos), mantendo estabilidade térmica e mecânica. Entre os possíveis candidatos, estão os vidros fosfatos com alta capacidade de dispersão dos dopantes, baixo índice de refração e propriedades termo-ópticas superiores aos silicatos, calcogenetos e fluoretos. Contudo, estes vidros apresentam alta energia de fônons, menor estabilidade química e mecânica e são higroscópicos, o que pode constituir um significativo mecanismo de supressão da luminescência devido ao acoplamento de transições dos TR3+ com vibrações de grupos hidroxila. Se por um lado vidros fluoretos podem ser obtidos com baixas energias de fônon e alta estabilidade química, os mesmos são mecanicamente frágeis e apresentam más características termo-ópticas. Para superar estas limitações, vidros oxifluoretos como fluorofosfatos têm sido explorados com a promessa de combinar os méritos dos fluoretos (baixas energias de fônon, baixos índices de refração, extensa janela de transmissão óptica) e dos óxidos (alta estabilidade química e resistência mecânica, maior solubilidade dos TR3+). Do ponto de vista das aplicações, considerando a transmissão e amplificação de sinais em telecomunicação em torno de 1,5 µm, e geração de ação laser de alta potência em torno de 1,0 µm, materiais dopados com Er3+ e Yb3+ estão entre os mais importantes. Neste trabalho apresenta-se a síntese e caracterização estrutural e espectroscópica de novos vidros fluorofosfatos dopados com Er3+ ou Yb3+ e co-dopados com ambos, no sistema composicional 25BaF225SrF2(30-x)Al(PO3)3xAlF3 (20-z)YF3:zTRF3 com x = 20 ou 15, TR = Er3+ e/ou Yb3+ e z = 0,25, 0,5, 1,0, 2,0, 3,0, 4,0 e 5,0 mol%. As amostras foram obtidas pelo método convencional de fusão e resfriamento e caracterizadas por Raman, Ressonância Magnética Nuclear de estado sólido e espectroscopia UV-VIS. Dos estudos por RMN de 19F verificou-se que há uma perda máxima de fluoreto de ~20% nas amostras. Ainda assim, a quantidade remanescente foi suficiente para garantir um ambiente químico favorável às emissões e poucas diferenças foram notadas entre as amostras com 20 e 15 mol% AlF3 contendo a mesma concentração de dopantes. Para o Er3+, tempos de vida do estado emissor 4I13/2 da ordem de 10 ms implicam em altos valores de eficiência quântica (η= 85%) e para o Yb3+ tempos de vida do estado emissor 2F5/2 similarmente longos (τ = 1,7 ms) foram medidos. Em amostras co-dopadas com 4,0 mol% YbF3 e 0,25, 1,0 e 2,0 mol% ErF3 o decréscimo do tempo de vida do Yb3+ e acréscimo do tempo de vida do Er3+ indicam que a transferência Yb→Er foi eficiente neste sistema. De maneira geral, os resultados indicam que os vidros estudados são potenciais candidatos a aplicações ópticas como as mencionadas acima. / Currently, glasses and glass ceramics doped with trivalent rare earth ions RE3+ represent the most important class of materials for laser and other optical applications in the visible and near-infrared spectral regions. In this context, one of the challenges is to find host matrices that assure good optical quality and optimum performance of the dopant ions (high absorption and emission cross sections, low probability of non-radiative decays, sufficiently long excited state lifetimes), while still maintaining thermal and mechanical stabilities. Among the candidates, phosphate glasses with high capacity for RE3+ dispersion, low refractive index and superior thermo-optical properties than silicate, chalcogenide and fluoride glasses are largely studied. However, phosphates present high phonon energies, lower chemical and mechanical stabilities and they are hygroscopic, which can imply in significant luminescence quenching effects. If on one hand fluoride glasses may be designed with low phonon energies and higher chemical stability, they are frail and present less than ideal thermo-optical properties. In order to overcome these drawbacks, oxyfluoride glasses such as fluorophosphates have been explored with the promise to combine the merits of fluorides (low phonon energies and refractive index, extensive optical window) and of oxides (high chemical stability and chemical resistance, higher solubility of RE3+). From the viewpoint of applications, when it comes to the transmission and amplification of signal in telecommunications around 1.5 µm, and the generation of high power lasers around 1.0 µm, materials doped with Er3+ and Yb3+ are among the favorite. Furthermore, because Yb3+ presents higher absorption cross-section than Er3+ at the preferred excitation wavelength for both these ions (980 nm), the former can act as an efficient sensitizer of excitation energy with subsequent transfer to the latter. We present the synthesis, and structural and spectroscopic characterization of new flurophosphate glasses doped with Er3+ or Yb3+ and co-doped with both, in the compositional system 25BaF225SrF2(30x)Al(PO3)3 xAlF3 (20- z)YF3:zREF3 with x = 20 or 15, RE = Er3+ and/or Yb3+ and z = 0.25, 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mol%. The samples were obtained by conventional melt quenching technique and characterized by Raman, solid state NMR and UV-VIS spectroscopy. From the NMR studies of 19F, it was shown that there is a maximum fluoride loss of 20% in the samples. Even so, the remaining quantity was enough to assure a favorable chemical environment to the RE3+ emissions. Little differences were detected between the samples with 20 and 15 mol% AlF3 for the same dopant concentration. For Er3+, lifetimes of the emitting level 4I13/2 of the order of 10 ms result in fluorescence quantum efficiency values (η = 85%), and similarly, for Yb3+, long lifetimes of the excited state 2F5/2 (τ = 1,7 ms) were measured. In co-doped samples with 4.0 mol% YbF3 and 0.25, 1.0 and 2.0 mol% ErF3 the decrease in lifetime of Yb3+ and increase in lifetime of Er3+ indicate that the Yb→Er energy transfer is efficient in this system. In general, the results indicate that the studied glasses are potential candidates for optical applications.
|
24 |
Rare earth doped fluorophosphate glass and glass-ceramics: structure-property relations / Vidros e vitroceramicas dopados com terras raras: correlações entre estrutura e propriedadesTássia de Souza Gonçalves 03 September 2018 (has links)
Rare earth RE3+ doped fluorophosphates glasses and glass ceramics are among the most promising candidates for high efficiency laser generation in the near-infrared spectral region. Glass ceramics are polycrystalline materials of fine microstructure that are produced by the controlled crystallization (devitrification) of a glass. By developing fluorophosphate base glasses with appropriate compositions and by controlling crystal nucleation and growth in them, glass ceramics with special properties can be fabricated combining the advantages of fluorides (low phonon energy, low refractive indexes, extensive optical window, lower hygroscopicity) and oxides (high chemical and mechanical stability and high dopant solubility), resulting in enhancement of the RE3+ emissive properties. In this study, we present the synthesis by melting/quenting and structural/spectroscopic investigation of new glasses and glass ceramics with composition 25BaF225SrF2(30-x)Al(PO3)3xAlF3(20-z)YF3: zREF3, where x = 15, 20 or 25, RE = Er3+ an/or Yb3+ and Nd3+. A detailed structural investigation of a series of this glasses has been conducted, using Raman, solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies. / Vidros e vitrocerâmicas fluorofosfatos dopados com íons terras raras (TR3+) estão entre os candidatos mais promissores para a geração de laser de alta eficiência na região espectral do infravermelho próximo. As vitrocerâmicas são materiais policristalinos com microestrutura bem definida obtida a partir da cristalização controlada do vidro base. Desenvolvendo vidros base de fluorofosfato com composições apropriadas e controlando a nucleação e crescimento de cristais, vitrocerâmicas com propriedades especiais podem ser fabricadas combinando as vantagens dos fluoretos (baixa energia de fônons, baixos índices de refração, janela ótica extensa, baixa higroscopicidade) e óxidos (alta estabilidade química e mecânica e alta solubilidade dopante), resultando no aumento das propriedades emissoras dos íons TR3+. Neste estudo, apresentamos a síntese por fusão/resfriamento e investigação estrutural/espectroscópica de novos vidros e vitrocerâmicas com composição 25BaF225SrF2(30-x)Al(PO3)3xAlF3(20-z)YF3: zREF3, onde x = 15, 20 ou 25, RE = Er3+ an / ou Yb3+ e Nd3+. Uma investigação estrutural detalhada de uma série destes vidros foi conduzida utilizando espectroscopias Raman, de ressonância magnética nuclear de estado sólido (RMN) e de ressonância paramagnética eletrônica (EPR).
|
25 |
Dithiocarbonate and trithiocarbonate interactions with pyrite and copperVenter, Jan Albert 24 April 2008 (has links)
Extensive research has been performed on the interaction of dithiocarbonates (xanthate) with a wide variety of substrates. This study the focuses on the interaction of trithiocarbonates (TTC) with pyrite and copper. The mechanism of adsorption of the xanthate is compared to that of the TTC. For the xanthate to adsorb it is necessary for an oxidant to be present, since xanthate adsorbs via charge transfer processes (electrochemical processes). It was found by the use of cyclic voltammetry and contact angle measurements that collector adsorption of the TTC can occur in both oxidising and reducing (thus the absence of an oxidant) conditions. Neither the TTC monomer nor the dimer could be detected on the surface by the use of Raman spectroscopy. The collector species on the surface was the TTC decomposition products namely the thiol or thiolate. Electrochemical impedance spectroscopy (EIS) confirmed that the TTC can interact under oxidising and reducing conditions. EIS showed that the rate of adsorption of the collector species for anodic currents increases relatively to the rate of adsorption for cathodic currents. Different adsorption mechanisms are realised for the different polarisation conditions. It is postulated that the TTC species serves as an intermediate for the adsorption of the thiol or thiolate on the surface, ultimately rendering the surface hydrophobic. Decomposition tests, performed by employing UV/Vis spectroscopy, indicated that the TTC is very unstable between a pH of 4 and 11. The thiol or thiolate however does not readily adsorb onto the substrates (indicated by the EIS measurements). Microflotation tests confirmed the thiolate’s inability to render pyrite hydrophobic. The microflotation tests also indicated that the TTC became less effective in recovering pyrite after it was left to decompose for a couple of hours. / Dissertation (MSc (Metallurgy))--University of Pretoria, 2008. / Materials Science and Metallurgical Engineering / unrestricted
|
26 |
Optical Measurement Techniques For High-Speed, Low-Density Flows In A Detonation Driven Shock TubeCatriona Margaret L White (11820119) 18 December 2021 (has links)
<p>Hypersonic flow conditions, such as temperature, pressure, and flow velocity, are challenging to measure on account of the extreme conditions experienced by a craft moving above Mach 5. At Mach 5, the temperature in stratospheric air behind a normal shock wave exceeds temperatures of 1,300 K, and as the craft speed increases, so does the temperature. At these temperatures and conditions, traditional measurement techniques such as thermocouples and pressure transducers either alter the flow path, affecting the measurement, or they do not survive the external conditions. As such, there is interest in investigating alternative ways to measure flow properties. This thesis focuses on the implementation of several optical measurement techniques designed to determine the flow temperature, density gradient, and flow velocity in a detonation driven shock tube. A detonation driven shock tube was chosen for the project as it reliably creates high-speed, low-density, gas flows that are reminiscent of hypersonic conditions. </p><p>The first optical measurement technique implemented was background oriented schlieren, a measurement technique that quantitatively provides density gradient data. Experimental data obtained at pressures up to 3,000 psia resulted in density gradients at the exit of the detonation tube in good agreement with the literature.</p><p>The detonation tube was also fitted with two fiber optic ports to gather chemiluminescence thermometry data. Both a Stellarnet Black-Comet spectrometer and a Sydor Ross 2000 streak camera were used to capture spectroscopic data at these ports, in order to determine the detonation speed and the rotational temperature of the intermediate OH* combustion products. The Stellarnet spectrometer did not have a fast enough data capture rate to gather reliable data. While the streak camera captured data quickly, we had difficulty gathering enough light from the combustion event and the gathered data was very noisy. The streak camera did however capture the time duration of the full combustion event, so if the fiber connector ports are improved this data taking method could be used in the future to gather rotational temperature data. Both measurement techniques provided some unintrusive measurements of high-speed flows, and improvements to the data taking system could provide much needed information on hypersonic flow conditions. </p>
|
27 |
Studium interakcí hyaluronan-tenzidy dialyzační technikou / Dialysis study of hyaluronan-surfactant interactionsŠejnohová, Michaela January 2014 (has links)
This diploma thesis is concentrated on the interactions between polyelectrolyte (hyaluronan) and cationic surfactant (CTAB). The experiments were performed in an aqueous solution and in an environment of physiological ionic strength (0,15mmoldm-3 NaCl). The determination of the surfactant concentration in solutions was based on the formation of colored complexes of CTAB and picric acid in chloroform. The concentrations of surfactant were measured by UV-VIS spectroscopy. The stability of CTAB+HyA was examined by a dialysis method. The results showed that, regardless of the environment, the presence of HyA in solution reduces the number of free molecules of CTAB which can be determined in the sample. It has been proved that there is an interaction between HyA and surfactant and that CTAB has greater affinity for HyA then for the picric acid. The stability of CTAB+HyA was determined by dialysis of 120 hours. After that time, the concentrations of the retentate and permeate were settled. The results showed that in the membrane remains a certain amount of CTAB bounded to hyaluronan. The system can be suitable for the preparation of targeted carriers of biologically active substances.
|
28 |
Vliv fotochromního aditiva na optické a elektrické vlastnosti polymerních matric / Influence of photochromic additives on the optical and electrical properties of polymer matricesTumová, Šárka January 2017 (has links)
This thesis is focused on the photochromic molecule of spiropyran, which changes its structure as well as physical and chemical properties after UV irradiation. These changes are reversible, the molecule thermally restore its initial structure. For the study, the molecule SP1 with the systematic name 1',3'-dihydro-1',3',3'-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole] was used. This molecule was incorporated within polymers PVK, Tg PPV, PCBTDPP and PCDTBT and the method of UV-VIS spectroscopy was used to observe the photochromic activity within these matrices. The influence of matrices to the ability to undergo UV induced photochromic conversion as well as to the reverse conversion to the initial structure induced by heat was monitored. Furthermore, the influence of spiropyran to the electrical properties of individual matrices was studied. The effect of photochromic conversion to both, the mobility of charge carriers and to the photogeneration was observed. For this purpose, the method of current-voltage measurement was used.
|
29 |
Photo-physical properties of lead-tin binary Perovskite thin filmsMabiala, Floyd Lionel January 2021 (has links)
>Magister Scientiae - MSc / Organic-inorganic lead-based perovskite has exhibited great performance in the past few years.
However, the lead (Pb) embedded in those compounds is a significant drawback to further
progress, due to its environmental toxicity. As an alternative, tin (Sn) based-perovskites have
demonstrated promising results in terms of electrical and optical properties for photovoltaic
devices, but the oxidation of tin ion- from stannous ion (Sn2+) to stannic ion (Sn4+) presents a
problem in terms of performance and stability when exposed to ambient conditions. A more
feasible approach may be in a Pb-Sn binary metal perovskite in pursuit of efficient, stable
perovskite solar cells (PSCs) with reduced Pb-content, as compared to pure Pb- or Sn-based
PSCs. Here, we report on the deposition of a Pb-Sn binary perovskite by sequential chemical
vapor deposition.
|
30 |
Characterization of Azobenzene Derivatives with Respect to Photoswitching and Aggregation PropertiesDay, Aaron M. January 2020 (has links)
No description available.
|
Page generated in 0.0599 seconds