• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UV Embossed Plastic Chip for Protein Separation and Identification

Guo, Xun, Chan-Park, Mary Bee-Eng, Yoon, Soon Fatt, Chun, Jung-Hoon, Hua, Lin, Sze, Newman 01 1900 (has links)
This report demonstrates a UV-embossed polymeric chip for protein separation and identification by Capillary Isoelectric Focusing (CIEF) and Matrix Assisted Laser Desportion/Ionization Mass Spectrometry (MALDI-MS). The polymeric chip has been fabricated by UV-embossing technique with high throughput; the issues in the fabrication have been addressed. In order to achieve high sensitivity of mass detection, five different types of UV curable polymer have been used as sample support to perform protein ionization in Mass Spectrometry (MS); the best results is compared to PMMA, which was the commonly used plastic chip for biomolecular separation. Experimental results show that signal from polyester is 12 times better than that of PMMA in terms of detection sensitivity. Finally, polyester chip is utilized to carry out CIEF to separate proteins, followed by MS identification. / Singapore-MIT Alliance (SMA)
2

Rapid Replication of High Aspect Ratio Molds for UV Embossing

Yan, Yehai, Chan-Park, Mary Bee-Eng, Yue, Chee Yoon 01 1900 (has links)
This paper describes a promising fabrication technique for rapid replication of high aspect ratio microstructured molds for UV embossing. The process involves casting silicone rubber on a microstructured master, replicating an epoxy mold using the PDMS rubber mold and finally, metallizing the surfaces of the epoxy mold by electroless plating nickel (EN). The preliminary study suggests that this technique is feasible for rapid replication of high aspect ratio molds for UV embossing. Uniform molds can be replicated rapidly through this technique making the process economical and accessible. / Singapore-MIT Alliance (SMA)
3

Daylighting applications of micro-textured optical surfaces

Bhatia, Rikki January 2001 (has links)
Daylighting is the use of natural light to replace artificial light. In traditional rooms sunlight will only illuminate the area closest to the window due to the high solar angle. The rear of the room appears gloomy and occupants will use electric lighting even though there is sufficient daylight to illuminate the interior. The first section of this thesis reports on the application of micro-prisms to glazing. Such systems could improve the penetration of the light and reduce the energy bill. Fig 1: (Left): A traditional window. (Right) A window with the top third coated in microprisms. The aim of the work is to develop suitable structures than can be easily and cheaply mass produced using an industrial UV embossing process. Whenever possible the requirements of this process dictate the physical characteristics of the microstructures. The development process includes all the stages from design to full-scale testing of the prototypes in an office. Several different mechanical methods are used to produce prismatic arrays that conform to an initial design calculation. Each sample is evaluated in terms of its physical characteristics, its optical properties and finally its ability to improve illumination within a room. The latter aspect is determined, not only by measurement, but also the subjective assessment of occupants. The second micro-textured surface to be examined is the microlens. Three systems are investigated: - A controlled diffuser incorporating cylindrical lenses to improve the distribution of the daylight. - An afocal pair of lenses to improve the penetration of daylight through beam-steering. - An angular filter to exclude direct sunlight while admitting diffuse light. Most of the research is concerned with the third system. On sunny days windows can cause sufficient glare that occupants will pull the venetian blinds. Not only will this exclude the direct sunlight but also the diffuse daylight, cause darkening of the room and leading to the use of artificial light. The angular filter or 'solar shade' uses microlenses to image the direct sunlight which can then be blocked by circular obturations. The diffuse sunlight is not focused and therefore transmitted so the room is not darkened. The research is based on experimentation with small-scale systems and computer modelling to optimise the system. The results show potential improvements over new 'smart' windows although mechanical tolerances are high.

Page generated in 0.0484 seconds