• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Receiver Design in the Ultra-Wide Band Channels

Chiu, Chih-hsien 12 September 2008 (has links)
Ultra-wideband (UWB) system is an indoor communication system, high data rate transmission within 5-10m transmitted range. This system suffers from high dense multipath channels impairment. If the spreading code is not orthogonal in dense multipath channels, severe inter-symbol interference (ISI) will degrade the system performance. In this thesis, we will discuss the performance of various receivers in ultra-wideband channels. Rake receiver can collect signal energy from different multipath. However, the imperfect orthogonal property of spreading code will cause severe ISI and degrade the performance of Rake receiver. Least mean square (LMS) chip equalizer not only combines the energy from different multipath, but also suppresses ISI. But, the complexity is too high to realize. In this thesis, we combine Rake receiver with ISI canceller to enhance system performance. If the canceller is before Rake receiver, we define it as ISIC RAKE. If the canceller is behind Rake receiver, we define it as RAKE ISIC. In the ISI canceller, not only ISI caused by preceding bits is cancelled, but also the ISI caused by following bit is cancelled. In multiuser cases, we are also canceling multi-access interference (MAI). From simulation results, the proposed method outperforms conventional Rake receiver, Rake receiver combined with LMS symbol equalizer, and LMS chip equalizer. The complexity of proposed method is lower than LMS chip equalizer.
2

Κυκλώματα υψηλών συχνοτήτων για σύστημα υπερ-ευρείας ζώνης με διαμόρφωση συχνότητας FM-UWB / High frequency circuits for a frequency modulation ultra wideband system FM-UWB

Τσίτουρας, Αθανάσιος 03 April 2015 (has links)
Ο κύριος στόχος της διατριβής είναι η σχεδίαση των κύριων κυκλωμάτων ενός τηλεπικοινωνιακού συστήματος υπέρ–ευρείας ζώνης (UWB). Συγκεκριμένα, σχεδιάζονται σε τεχνολογία CMOS 90nm και αναπτύσσονται τα πλέον κρίσιμα κυκλώματα του PLL του FM-UWB πομπού με βάση ένα σύστημα FM-UWB, το οποίο στηρίζεται στη διπλή διαμόρφωση FM ευρείας ζώνης (double wideband FM modulation). Αυτά είναι το VCO, η αντλία φορτίου, ο διαιρέτης συχνότητας, και η γεννήτρια τάσης αναφοράς. Επιπλέον σχεδιάζονται ο δέκτης ο οποίος περιλαμβάνει τον προενισχυτή και τον αποδιαμορφωτή FM, δύο αρμονικοί ταλαντωτές ελεγχόμενοι από τάση για το υποσύστημα του πομπού σε τεχνολογία RF CMOS 65nm και ένας ταλαντωτής ελεγχόμενος από τάση τύπου δακτυλίου. Συνεπώς, στα πλαίσια της διατριβής αυτής σχεδιάζεται ολόκληρο το σύστημα πομπού και το σύστημα δέκτη (front-end) ώστε να αναδειχθούν οι δυνατότητες ολοκλήρωσης και τα πλεονεκτήματα της υλοποίησης ενός συστήματος FM-UWB σε πρόσφατες τεχνολογίες όπως η CMOS των 90nm και 65nm σε αντιδιαστολή με διπολικές τεχνολογίες. Με βάση τις λεπτομερείς προδιαγραφές που εξήχθησαν για τα υποσυστήματα και κυκλώματα του πομποδέκτη επιλέχτηκε η αρχιτεκτονική και σχεδιάστηκαν τα επιμέρους κυκλώματα στη ζώνη συχνοτήτων 3.1-5GHz. Για τη σχεδίαση χρησιμοποιήθηκαν το εργαλείο σχεδίασης «Cadence 5.1.41» και ο εξομοιωτής «Spectre». Για τη φυσική σχεδίαση έγινε χρήση του εργαλείων «Virtuoso XL» και «Assura». Ο πομπός αποτελείται από ένα γραμμικό VCO μεγάλου εύρους ζώνης (2.1GHz-5GHz) του οποίου η κεντρική συχνότητα ρυθμίζεται από ένα βρόχο κλειδωμένης φάσης (PLL) όταν δεν γίνεται μετάδοση δεδομένων. Στην ουσία πρόκειται για ένα PLL ο βρόχος του οποίου διακόπτεται όταν πραγματοποιείται εκπομπή πληροφορίας μέσω της διπλής διαμόρφωσης FM ενώ παραμένει κλειστός κατά τη ρύθμιση της κεντρικής συχνότητας του VCO (calibration). Το πιο κρίσιμο κύκλωμα του πομπού είναι το FM-UWB VCO. Για την ολοκλήρωση όμως του πομπού απαιτείται η σχεδίαση των υπόλοιπων κυκλωμάτων του βρόχου όπως είναι η αντλία φορτίου, ο διαιρέτης συχνότητας του βρόχου και ο ανιχνευτής φάσης-συχνότητας. Η τροφοδοσία του πομπού FM-UWB επιλέχτηκε να είναι ίση με 1V προκειμένου να ενισχυθεί η ανταγωνιστικότητα του με άλλα παρόμοια σύγχρονα συστήματα της βιβλιογραφίας. Με αρχικό στόχο την πόλωση των αναλογικών κυκλωμάτων του πομπού FM-UWB (αντλία φορτίου, διαιρέτης συχνότητας του PLL) αναπτύχθηκε μια γεννήτρια συνεχούς τάσης σε τροφοδοσία κάτω του 1V. Ο δέκτης αποτελείται από ένα συντονιζόμενο προενισχυτή και έναν αποδιαμορφωτή συχνότητας FM που σχεδιάζονται στη κεντρική συχνότητα των 4GHz με εύρος ζώνης μεγαλύτερου από 500MHz. Ο προτεινόμενος ταλαντωτής ελεγχόμενος από τάση (VCO), χαρακτηρίζεται από μεγάλο εύρος ζώνης συχνοτήτων ταλάντωσης, χαμηλή κατανάλωση και είναι κατάλληλος για iii εφαρμογές FM-UWB. Ο ταλαντωτής αυτός αποτελεί το βασικό δομικό στοιχείο ενός FM-UWB πομπού. Σχεδιάστηκε στην τεχνολογία υλοποίησης TSMC 90-nm digital CMOS, σε τάση τροφοδοσίας 1V και χαρακτηρίζεται από γραμμικό εύρος ζώνης συχνοτήτων ταλάντωσης μεταξύ 2.1GHz και 5GHz, διαφορική ισχύ εξόδου ίση με -7.83dBm  0.78dB και χαμηλή κατανάλωση ισχύος 8.26mW, συμπεριλαμβανομένης και της κατανάλωσης ισχύος των απομονωτών τάσης εξόδου (output buffers), στη μέγιστη συχνότητα ταλάντωσης. Επιπροσθέτως, έχει βελτιστοποιηθεί ως προς το λόγο εύρους ζώνης συχνοτήτων ταλάντωσης προς την κατανάλωση ισχύος TR/PDC. Η πρώτη βελτιστοποίηση έδωσε τιμή 9.95dB και η τελική έδωσε 11.97dB. Η επιθυμητή ζώνη συχνοτήτων ταλάντωσης μεταξύ 3.1GHz και 5GHz για εφαρμογές FM-UWB υπερκαλύπτεται για ολόκληρο το εύρος θερμοκρασιών που συναντάται στη βιομηχανία (από -40 oC έως 125 oC). Το εύρος συχνοτήτων ταλάντωσης βελτιώθηκε στο 130.15% (από 81.69%) και το FOM αυξήθηκε σε 143.08 (από 137.03). Επιπλέον, στη διατριβή αυτή παρουσιάζεται η σχεδίαση προγραμματιζόμενων, αντλιών φορτίου μεγάλης ακριβείας σε τάση τροφοδοσίας 1V. Τρείς συνολικά τοπολογίες μελετώνται με βασικό στόχο το καλύτερο δυνατό ταίριασμα των ρευμάτων εξόδου καθώς και τη μείωση των απότομων παρυφών ρεύματος στην έξοδο για μεγάλο εύρος τάσης εξόδου ώστε να επιτυγχάνεται αποδοτική χρήση της διαθέσιμης τάσης τροφοδοσίας (ΔVout/Vdd). Οι αντλίες φορτίου Ι, ΙΙ και ΙΙΙ χαρακτηρίζονται από μη ταίριασμα DC ρευμάτων εξόδου ίσο με 1%, 1.846% και 8% αντίστοιχα. Επιτυγχάνεται μεγαλύτερη μείωση των απότομων παρυφών ρεύματος στην έξοδο της αντλίας φορτίου ΙΙΙ σε σχέση με τις αντλίες φορτίου Ι και ΙΙ και μεγαλύτερη ταχύτητα λειτουργίας εις βάρος όμως της κατανάλωσης ισχύος. Ένα ολοκληρωμένο κύκλωμα γεννήτριας τάσης αναφοράς (Voltage reference) σχεδιάζεται επίσης, ώστε να χρησιμοποιηθεί ως κύκλωμα πόλωσης χαμηλής τροφοδοσίας κάτω του 1V ολοκληρωμένων κυκλωμάτων γενικού σκοπού. Η συνολική απόλυτη μεταβολή της τάσης αναφοράς εξόδου ως προς την μεταβολή των παραμέτρων της τεχνολογίας υλοποίησης και τις μεταβολές της τάσης τροφοδοσίας σε ευρεία κλίμακα θερμοκρασίας από -360C και 1250C ισούται με +/-3.3%. Η συνολική κατανάλωση ισχύος ισούται με 208uW. Παρουσιάζεται ακόμη η σχεδίαση ενός υποσυστήματος (front-end) δέκτη FM-UWB χαμηλού ρυθμού μετάδοσης δεδομένων (LDR, Low Data Rate), 50Kbps και μικρής εμβέλειας (<10m) με εύρος ζώνης μεγαλύτερο από 500MHz στην κεντρική συχνότητα των 4GHz. Δίνεται αναλυτικά η σχεδίαση της προτεινόμενης τοπολογίας για τον δέκτη FM-UWB στην τεχνολογία RF CMOS 65 nm ώστε να ικανοποιούνται οι προδιαγραφές του συστήματος που εξήχθησαν κατόπιν ανάλυσης. Τα αποτελέσματα του τελικού σχεδιασμού αποδεικνύουν ότι η συγκεκριμένη τεχνολογία, όταν συνδυάζεται με προσεκτικές επιλογές στη σχεδίαση μπορεί να πετύχει επιδόσεις συγκρίσιμες με τεχνολογίες SiGe BiCMOS που έχουν ενδογενή πλεονεκτήματα λόγω των ειδικών χαρακτηριστικών τους. iv Ο δέκτης FM-UWB αποτελείται από έναν προενισχυτή και ένα αποδιαμορφωτή συχνότητας FM-UWB. Η τεχνολογία υλοποίησης επιλέχτηκε να είναι η CMOS IBM των 65nm. Το συνολικό ρεύμα που απαιτείται για τη λειτουργία του πυρήνα του δέκτη FM-UWB είναι 8.093mA σε τροφοδοσία 1.8V και η ευαισθησία του δέκτη ισούται με -75.78dBm για λόγο σήματος προς θόρυβο SNRsub ίσο με 13.539dB. Συνεπώς, ικανοποιούνται πλήρως οι προδιαγραφές οι οποίες τέθηκαν ύστερα από τη μελέτη του τηλεπικοινωνιακού συστήματος FM-UWB. Η ευαισθησία του δέκτη αποδεικνύεται ότι μπορεί να αυξηθεί σε -82.95dBm για SNRsub ίσο με 13.539dB εάν προστεθεί ένα ακόμα στάδιο ενίσχυσης στο στάδιο καθυστέρησης του αποδιαμορφωτή FM-UWB με επιβάρυνση επιπλέον 8.033mW. Σχεδιάζεται επιπροσθέτως ένας αρμονικός ταλαντωτής για τον πομπό στα 65 nm ώστε να αναδειχθούν τα πιθανά οφέλη που μπορούν να προκύψουν όταν θυσιάζεται εύρος ζώνης και επιφάνεια ολοκλήρωσης εις όφελος της κατανάλωσης και των επιδόσεων του θορύβου φάσης. Για το συντονισμό αυτού του αρμονικού ταλαντωτή γίνεται χρήση μιας «hyperabrupt varactor» ώστε να επιτευχθεί εύρος ζώνης συχνοτήτων ταλάντωσης με καλή γραμμικότητα σε σύγκριση με αρμονικούς ταλαντωτές με απλή «varactor». Η συνολική κατανάλωση του πομπού FM-UWB ισούται με 5.11mW (συμπεριλαμβανομένης και της κατανάλωσης ισχύος του ενισχυτή εξόδου), ενώ το συνολικό γραμμικό εύρος ζώνης συχνοτήτων και το FOM του προτεινόμενου LC VCO ισούνται με 808ΜΗz και -173.679dB αντίστοιχα. Η ισχύς εξόδου του πομπού είναι μεγαλύτερη από -12dBm στη συχνότητα 4.14GHz και μεταβάλλεται λιγότερο από 0.5dB σε ολόκληρο το εύρος συχνοτήτων ταλάντωσης. Η καλή λειτουργία του εξασφαλίζεται στο εύρος θερμοκρασίας μεταξύ -40 0C και 1200C με θόρυβο φάσης στα 4.14GHz καλύτερο από -100dBc/Hz σε απόκλιση συχνότητας από τον φορέα 1ΜΗz. Στη συνέχεια, η ιδέα της επαναχρησιμοποίησης ρεύματος εφαρμόζεται στον παραπάνω αρμονικό ταλαντωτή-FM-UWB πομπό στα 65nm ούτως ώστε ο απομονωτής εξόδου να τοποθετείται πάνω από τον πυρήνα του LC VCO. Αυτό οδήγησε στη μείωση της αρχικής κατανάλωσης ισχύος (έως και 73.63%) ενώ διατηρήθηκαν τα παραπάνω χαρακτηριστικά του. Τέλος, σχεδιάστηκε ένα VCO τύπου δακτυλίου σε τροφοδοσία 1.8V, στα 65 nm. Καλύπτει τη ζώνη συχνοτήτων από 3.1GHz έως 5GHz με θόρυβο φάσης καλύτερο από -83dBc/Hz σε απόκλιση συχνότητας από τον φορέα ίση με 1MHz, με εύρος ζώνης διαμόρφωσης ίσο με 1MHz, παρέχοντας στην έξοδο του ισχύ μεγαλύτερη από -12dBm ενώ καταναλώνει 3.63mW. / The main purpose of this thesis is the design of the critical circuits of an Ultra Wideband (UWB) communication system. More specifically, circuits were designed for an FM-UWB system which relies on a double constant envelope FM modulation scheme. The most critical circuits of the transmitter PLL are designed in a 90nm CMOS process. These are the VCO, the loop divider, the charge pump and the voltage reference. In addition, the FM-UWB receiver front-end is designed in a 65nm RF CMOS process which includes an LNA/Preamplifier and a FM-UWB demodulator. Two harmonic LC-VCOs are also designed and one ring current-starved VCO to function as FM-UWB modulators in the transmitter path. Consequently, in this thesis the full transceiver front-end is designed in order to demonstrate the potential of its integration and the advantages of the implementation of an FM-UWB system in recent CMOS technologies such as those of 90nm and 65nm in comparison with bipolar implementations. Based on system study, the front-end circuits’ specifications were derived, the appropriate front-end architecture was selected and the front-end circuits were designed in the band of 3.1-5GHz. For the circuit design the tools of Cadence 5.1.41 and the Spectre RF Simulator were used. For the circuits layout designs the tools of Virtuoso XL and Assura were used. The transmitter consists of a linear VCO with wide tuning range (2.1GHz-5GHz) of which the central frequency is calibrated by a Phase Locked Loop when data transmission is ceased. The loop remains open when data transmission has to take place and stays closed when the VCO central frequency has to be calibrated. The most important block of the transmitter is the FM-UWB VCO. For the completion of the FM-UWB transmitter the design of other blocks such as the charge pump, the loop divider, the phase frequency detector and the voltage reference generator design is important as well. The supply voltage of 1V was selected for the FM-UWB transmitter in order to become competitive against other recent published implementations. Targeting at the biasing of the loop divider and the charge pump at the low supply voltage of 1V, a Sub-1V voltage reference generator was designed. The receiver consists of a wideband LNA/Preamplifier and a wideband FM demodulator with a center frequency at 4GHz and a useful bandwidth higher than 500MHz. Targeting at the implementation of wide frequency range (3.1-5GHz), the main purpose was the design of a linear, inductorless, low power (less than 10mW), low area, low supply voltage controlled oscillator with a phase noise better than -70dBc/Hz at 1MHz offset and small output power variation over the entire tuning range. The proposed FM-UWB VCO was designed in a 90-nm standard digital CMOS process at a supply voltage of 1V and a relatively linear tuning range is achieved between the frequencies of 2.1GHz and 5GHz, a differential vi output power of -7.83dBm 0.78dB and a low power consumption of 8.26mW when the output buffers power consumption is included at the maximum frequency of oscillation. The proposed FM-UWB VCO was optimized for the ratio of tuning range over the power consumption TR/PDC. The first optimization yields TR/PDC equal to 9.95dB and the final optimization yields TR/PDC equal to 11.974dB. The desired oscillation frequency band between 3.1GHz and 5GHz for FM-UWB applications is fully covered for the entire industrial temperature range of -40 0C to 125 0C. The tuning range of the improved VCO equals 130.15% (from 81.69%) whereas the improved VCO FOM was increased to 143.08 (from 137.03). Afterwards, programmable charge pumps with high accuracy were designed operating at the supply voltage of 1V. These charge pumps can be used in the PLL of the FM-UWB transmitter or in PLLs used for different telecommunication applications. Three in total charge pumps were designed aiming at a very good DC mismatch between the output source and sink currents, the reduction of the output source and sink current glitches for the maximum possible output voltage range. Charge pumps I, II and III achieve DC mismatch of 1%, 1.846% and 8% respectively. Charge pump III achieve lower output current glitches and higher speed of operation when compared to charge pumps I and II at the expense of higher power consumption. Furthermore, an integrated sub-1V voltage reference generator is presented. It is designed in standard 90-nm CMOS technology. The output reference voltage achieves a total absolute variation of ±3.3% over all process and supply voltage variations. The total power consumption equals 208μW. The proposed low data rate (50Kbps), short range (<10m), FM-UWB receiver front-end is designed in 65nm RF CMOS technology at a supply voltage of 1.8V with a useful bandwidth higher than 500MHz at the center frequency of 4GHz and the current reuse technique is applied aiming at the reduction of the overall power consumption around 14mW. It consists of a wideband preamplifier and a wideband FM demodulator. Final results show that CMOS technology at 65nm when it is combined with careful circuit design and specific circuit topologies can achieve comparable performance to SiGe BiCMOS technologies which have inherent advantages due to their special characteristics. The total bias current of the FM-UWB receiver core is only 8.093mA at a supply voltage of 1.8V and the receiver sensitivity equals -75.78dBm at a signal to noise ratio, SNRsub equal to 13.539dB. The receiver sensitivity can be improved to -82.95dBm at a signal to noise ratio, SNRsub equal to 13.539dB when an additional amplification stage is included in the delay element of the FM-UWB demodulator at the price of extra 8.033mW. Moreover, the design of an FM-UWB LC VCO in the 65nm RF CMOS technology is proposed as the main block of an FM-UWB transmitter. A hyperabrupt varactor is used in the vii tank of the proposed LC VCO in order to achieve linear tuning range. The total power consumption of the proposed LC FM-UWB VCO is 5.11mW including the power consumption of the output buffers, the total linear frequency range and the figure of merit, FOM equal 808MHz and -173.679dB respectively. The suggested LC VCO output power level is higher -12dBm at the frequency of 4.14GHz and varies less than 0.5dB in the entire frequency range of operation. The operation of the suggested VCO is ensured for the entire industrial temperature range between -40 0C and 120 0C with a phase noise performance better than -100dBc/Hz at the frequency offset of 1MHz at 4.14GHz. The above described performance of the proposed FM-UWB LC VCO is improved in terms of power consumption by applying the current reuse technique for the LC VCO core and the output buffer. By stacking the LC VCO core with the output buffer the power consumption can be reduced by 73.63% in comparison with the previously described LC VCO whereas the other VCO characteristics remain the same apart from the output power level which is reduced. Furthermore, a linear, inductorless VCO is proposed. This VCO is designed in 65nm RF CMOS technology and is based on the current starved topology. The suggested VCO tuning is achieved by modulating the current of the VCO core linearly by a voltage to current converter. This VCO is suitable for the FM-UWB application since it covers the frequency range between 3.1GHz to 5GHz and it achieves a phase noise performance of better than -83dBc/Hz at 1MHz offset. The VCO buffer delivers to a 50 Ohm load output power of better than -12dBm. The total VCO power consumption equals 3.63mW (including the output buffer) at a supply voltage of 1.8V and the VCO maximum modulation bandwidth equals 1MHz. Finally, it should be noted that the design of LC harmonic VCOs based on the use of hyperabrupt varactor and the linear current starved VCO design which took place in the last period of this thesis shows our effort to improve the performance of our previous work in the area of VCO circuit design by taking into account the latest published achievements of the literature. In conclusion, in this thesis all of the main VCO topologies were studied and designed for the needs of an FM-UWB transmitter front-end.
3

Developmental Studies on Ultra Wide Band Type High Power Electromagnetic Radiating System for Use as an Intentional Electromagnetic Interference Source

Hiralal, Bhosale Vijay January 2017 (has links) (PDF)
The electronic control, instrumentation and communication hardware is becoming more and more compact and faster in operation due to the increased use of large scale integration of semiconductor devices operating at higher speeds. The use of VLSI circuit based systems in various industrial and defence sectors is also increasing continuously. Since the operating threshold voltages and currents of these devices are very small they are very prone to electrical disturbance in their operation by the Electromagnetic Interference (EMI) signals. Their proper functioning is very important particularly in the case of systems used in mission mode, critical defence/industrial platforms. EMI can be generated within the electronic system/equipment itself or may result due to some external electromagnetic source. The high power Ultra Wide Band system is one such kind of external High Power Electromagnetic (HPEM) interference source which may cause malfunctioning/physical damage to the sensitive electronic systems. Hence it is necessary to test the susceptibility of electronics to such high power UWB based intentional EMI or IEMI sources. The sources for generating these transient EM fields may also be used in impulse radars and offensive applications to mal-operate/damage non-friendly electronics. The UWB system consists of a high voltage pulsed power source called pulser along with a high bandwidth (Ultra Wide Band) antenna to radiate the UWB signal. The pulse fed by the pulser to the antenna through a switch is of high voltage type (amplitude of few 10s of kV to about a MV) and has a sub-nanosecond rise time. Most of the UWB systems developed over the world have the switch employing gaseous dielectric switching media used at pressures above the atmospheric level to generate such a fast rise time voltage pulse. Use of gaseous switching media at sub-atmospheric pressures to achieve sub-ns rise time, short duration high voltage pulses required for the high power UWB applications is another possibility. This possibility has not been exploited till date. Hence it was decided to develop a pulser switch with gaseous switching media at sub-atmospheric pressures (up to 50 mbar) and achieve sub-ns rise time voltage pulses of up to 50 kV. The energy delivered out by the UWB system depends upon the pulser output energy per switching shot and the repetitive switching rate of the pulser. To achieve maximum energy output it is required to maximize either the energy per switching shot or the pulse repetition rate (PRR) of the pulser switch. The optimization of the pulser operation to achieve maximum pulser energy output in every switching shot has not been tried so far. In this work it was decided to analyze the circuit so as to achieve maximum pulser output energy per switching shot. Another objective of the study was to systematically characterize the pulser switch using various gases and gas mixtures as the switching media to evaluate the switch performance as a function of gas pressure and switch breakdown voltage. The effect of pulser and antenna performance parameters on the UWB system performance was also decided to be evaluated. Hence the present thesis work deals with the design, development, evaluation and performance optimization of a 50 kV, 25 MW UWB system based on Half Impulse Radiating Antenna (HIRA) fed by a coaxial capacitive pulser. The spark gap type self triggered pulser switch is designed to have a fixed gap spacing and variable gas pressure in order to vary the switch breakdown voltage. The switch is designed for operation with dry air, nitrogen, sulphur hexafluoride (SF6) and a mixture of different gases as the dielectric switching media with pressures of up to 5 bar above the atmospheric level and up to 50 mbar below the atmospheric level. Physical placement of the switch just above the coaxial pulser capacitor terminal offered a low inductance geometry. The rise time estimation of the switch has been carried out as a function of gas pressure and the switch arc inductance. These rise time values have been compared with the measured ones and a good agreement was found between the two. The rise time values indicate that an inverse relationship exists between the gas pressure and the rise time. The rise time was found to decrease at increased pressures. SF6 gas offered the minimum rise time out of all the gases/mixtures studied. The pulse repetition rate (PRR) of the UWB system depends upon the dielectric recovery of the gaseous switch and the charging time of the pulser capacitor. To estimate the PRR a circuit model has been proposed based on these parameters. The model shows an inverse relationship between the switch breakdown voltage (BDV) and the gas pressure with the PRR. The estimated PRR values were found to vary between 800 Hz and 5 kHz in the experimented range of the switch breakdown voltage. The PRR values have also been experimentally measured. There is a good match between the measured and the estimated values up to the switch BDV of 12.5 kV after which the difference is increased to about 20 %. The feed for the reflector of the HIRA antenna consists of a pair of coplanar conical transverse electromagnetic (TEM) feed plates as they have a better antenna aperture blockage performance. The angles of the TEM feed plates have been chosen using stereographic projections of the feed plates into the HIRA reflector. Each TEM feed plate of 200  characteristic impedance has been terminated by matched resistor. An analytical expression has been derived to optimize the pulser output voltage at which the energy output per switching shot of the UWB system is maximum. It was found that when the pulser output voltage i.e. the switch breakdown voltage is 75 % of the dc source voltage the output energy delivered is maximum. It was possible to achieve a maximum output energy of 10 J per switching shot for the designed 25 MW high power UWB system. The HIRA antenna has been analysed for the impedance profile for frequencies up to 3.5 GHz and was found to maintain a reflection performance better than -10 dB over the frequency range. The radiated field analysis of the antenna was carried out using an analytical model and numerically by using a commercially available software. It was found that as per the analytical model, the Figure of Merit (FoM) of the designed UWB system is 1.41 V for a normalized excitation feed pulse of 1 V and the 3 dB spectral content of the radiated field is between 180 MHz-1.8 GHz. The corresponding results using computer simulations of the UWB system indicate a slightly lesser FoM of 1.1. Higher FoM obtained using the analytical model is due to ignoring the antenna aperture blockage and the field diffraction effects over the TEM feed arms as well as from the rim of the reflector of the antenna. The radiated field amplitude and gain of the HIRA antenna were found to be a direct function of the frequency of the radiated signal. Higher gains and narrower beam width for the radiated field were observed with an increase in the frequency. The radiated field spectral waveform in the near field region was observed to have a notch at a particular frequency and its harmonics. The notch frequency was found to be a function of the propagation time difference called clear time. The effect of pulser rise time, antenna feed arm impedance and position on the radiated far field amplitude and wave shape was analysed. It was observed that with decrease in the pulser rise time from 700 ps to 100 ps, the radiated field amplitude increases by about 600 %. A matched termination impedance with position of 30of the TEM feed arms with respect to the vertical symmetry axis of the antenna provides a higher radiated field amplitude and lower post pulse oscillations in the radiated field waveform. The pulser switch was evaluated systematically for various performance parameters such as BDV, rise time, PRR, voltage recovery and jitter characteristics as a function of switch gas pressure, type of gaseous switching media and breakdown voltage at pressures above and below the atmospheric level. The switch BDV was found to be a linear function of pressure of the gas used i.e. dry air, nitrogen, sulphur hexafluoride (SF6) and a mixture of air and SF6. The measured rise times of all the gases were found to be in inverse proportion to the switch gas pressure. SF6 gas offered the best rise time and hence was found to be a good contender for achieving higher radiated field amplitudes and bandwidth. The voltage recovery characteristics of SF6 gas and air were experimentally studied as a function of the recovery time. It is found that both the gases have similar recovery characteristics having a distinct saturation plateau region. It was found that for a given recovery time SF6 recovers to a higher voltage than air and the recovery further improves for SF6 at increased pressures (between 0.5-2 bar). The effect of the number of switching shots on the jitter in the switch rise time was measured by operating the switch continuously at a PRR of 1 kHz and for total number shots up to 10.8 M. It was observed that the jitter increases by an order of magnitude after 10.8 M shots. This indicates that for the present switch design, the switch electrodes require maintenance (buffing, polishing, etc.) after every 3.5 M shots to maintain a reasonably low jitter. SF6 gas was characterized for a fixed source voltage to determine the effect of pressure on rise time in the sub atmospheric regime (up to 50 mbar). It was found that the rise time vs. pressure characteristics follows the Paschen’s curve with a value of pressure at which rise time is the lowest for a given source voltage. With increase in the source voltage the rise time was found to decrease. The HIRA based UWB radiating system was evaluated for radiated fields in the near and far field region for the temporal and spectral characteristics. It was found that for the source voltage of 25 kV, the FoM in the near and far field region are 29.4 kV and 28.9 kV respectively. The fields in the distant far field region have more oscillatory post pulses due to the effect of ground reflections and the low frequency dipole moment mismatch of the antenna. Since SF6 gas offered the best rise time of 193 ps at a voltage of 46 kV than the other gases tried, the radiated field is the highest (5.3 kV/m) with SF6 at a distance of 10 m offering a gain factor of 1.15. Dry air offered a radiated field gain factor of 0.83 which got improved by 33 % by just 30 % addition of SF6 gas into the air. The field amplitudes measured were in good agreement with those computed using the analytical model and the computer simulations and they follow the 1/R rule as a function of the far field distance, R in the bore sight direction. The measured radiation pattern of the UWB system showed a focussed and narrow radiated field beam at higher frequencies with a half field beam width (HFBW) of 8 at 2 GHz. The UWB system was measured to have dominant highest cut off frequency of 1.79 GHz with a band ratio and percentage band width of 9.56 and 162.11 % respectively. This confirmed that the developed system is of sub-hyper band radiator type. The UWB system developed through this work is having a better performance than some of the other systems developed elsewhere in the world, in terms of FoM (53 kV) and the PRR (> 1 kHz). The system can be further improved in terms of consistency (jitter) and intensity by use of a triggered switch and hydrogen gas at 100 bar pressure as the switching medium respectively. The profile of the TEM feed plates of the HIRA antenna may be further improved to have a better antenna aperture fill factor. Such multiple systems in an arrayed manner may be used either for higher power output/better agility of the radiated field beam. This system will be fully exploited for the applications of susceptibility evaluation of electronic circuits, non-friendly applications as well as impulse radars

Page generated in 0.0367 seconds