Spelling suggestions: "subject:"hpc"" "subject:"uhpc""
21 |
Berücksichtigung von Temperaturfeldern bei Ermüdungsversuchen an UHPCDeutscher, Melchior 07 March 2023 (has links)
Die Anforderungen an Baumaterialien steigen durch immer schlankere und höhere Tragwerke. Im Massivbau geht daher seit längerem die Materialentwicklung hin zu hochfesten und ultrahochfesten Betonen. Neben der steigenden statischen Beanspruchung nimmt gleichzeitig, bedingt durch immer ausgereiztere Konstruktionen, die Bedeutung der Ermüdungsfestigkeit zu. Deswegen liegt der Fokus der Forschung im Bereich der Hochleistungsbetone aktuell vor allem auf der Widerstandsfähigkeit gegenüber zyklischen Beanspruchungen. Dabei wurde in verschiedenen Forschungsvorhaben bei höheren Prüfgeschwindigkeiten bei Druckschwellversuchen zur Erzeugung von Wöhlerlinien eine Erwärmung der Probekörper festgestellt. Diese Arbeit widmet sich dieser Thematik bezogen auf ultrahochfesten Beton.
Mit einer umfangreichen Parameterstudie konnte ein Überblick über maßgebende Einflussgrößen auf den Erwärmungsprozess gegeben werden. Als wichtigste Ursachen für die Temperaturerzeugung wurde zum einen ein inneres Reibungspotenzial festgestellt, welches mit geringer werdendem Größtkorn und durch wachsende Schädigung ansteigt. Zum anderen ist die eingetragene Energie pro Lastwechsel entscheidend. Anders als die Ermüdungsfestigkeit von Beton, die vor allem von der Oberspannung abhängig ist, ist die Erwärmung pro Lastwechsel von der Spannungsamplitude abhängig. Die Prüfgeschwindigkeit beeinflusst die messbare Erwärmung hingegen nur durch die Veränderung des Zeitraums, der pro Lastwechsel zur Temperaturabgabe zur Verfügung steht. Die Temperaturgenerierung pro Lastwechsel ist hingegen frequenzunabhängig.
Ein negativer Einfluss der Probekörpererwärmung zeigt sich vor allem bei der deutlichen Reduzierung der Bruchlastwechselzahlen im Vergleich zu Versuchen, bei denen kein deutlicher Temperaturanstieg zu verzeichnen war. Basierend auf bisherigen Arbeiten zu hochfesten Betonen schlagen deswegen verschiedene Autoren eine Anpassung des Versuchsablaufs zur Begrenzung der Temperaturentwicklung im Probekörper vor. Die vorliegende Arbeit zeigt im Gegensatz dazu eine Methode auf, bei der die Erwärmung zugunsten einer zeiteffizienten Prüfung zugelassen und anschließend bei der Auswertung berücksichtigt wird. Als eine Hauptursache für das vorzeitige Versagen bei starker Erwärmung wurde die statische Druckfestigkeit, welche temperaturabhängig
ist, ausgemacht. Steigt die Temperatur, reduziert sich gleichzeitig die Druckfestigkeit. Dies führt bei kraftgesteuerten Druckschwellversuchen mit konstantem Lastspiel zu einer Veränderung des bezogenen Spannungsspiels. Vor allem die stark steigende bezogene Oberspannung führt schlussendlich zu einem vorzeitigen Ermüdungsversagen. Da die Temperatur bei den Versuchen, die vor den rechnerischen Erwartungswerten versagen, stetig bis zum Versagenszeitpunkt ansteigt, ist der Probekörper einer sich über die Versuchsdauer veränderlichen bezogenen Beanspruchung ausgesetzt. Bei der Versuchsauswertung kann ein veränderliches Lastspiel nicht für die Einordnung in Wöhlerdiagramme verwendet werden. Weil die Verwendung der Lasteingangsgrößen zu einer Unterschätzung der Ermüdungsfestigkeit führt, muss eine Ermittlung eines äquivalenten konstanten
Spannungsspiels erfolgen, welches die Festigkeitsveränderung des Betons berücksichtigt. Anhand der durchgeführten Druckschwellversuche und der temperaturabhängigen Druckfestigkeit wurde eine analytische Methode entwickelt, mit der unter Verwendung der anfänglichen Lastamplitude sowie der gemessenen maximalen Temperatur eine angepasste Oberspannung berechnet und dann die erreichte Bruchlastwechselzahl in ein Wöhlerdiagramm eingetragen werden kann.
Diese Methode wird für den vertieft untersuchten ultrahochfesten Beton für eine Vielzahl von Lastkonfigurationen sowie zusätzlich für Versuchsergebnisse eines hochfesten Betons abschließend verifiziert.:Inhaltsverzeichnis
1 Einleitung und Aufbau 1
1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Stand des Wissens 5
2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14
2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15
2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17
2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18
2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23
2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24
2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24
2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28
2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem
Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von
HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Eigene Forschung 37
3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39
3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39
3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46
3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High
Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49
3.4.2 “Experimental Investigations on Temperature Generation and Release
of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher
et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic
compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86
3.4.4 “Influence of the compressive strength of concrete on the temperature
increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98
3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116
3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122
3.6.1 “Influence of temperature on the compressive strength of high performance
and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123
3.6.2 “Consideration of the heating of high-performance concretes during cyclic
tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134
3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4 Zusammenfassung und Ausblick 153
4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5 Allgemeine Ergänzungen A1
5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7
5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11
5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21
5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22
5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23
5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28
5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31 / Due to ever slimmer and higher load-bearing structures the requirements on building materials are increasing. On the part of concrete, the development is therefore moving towards high-strength and ultra-high-strength concretes. In addition to the increasing static stress, the importance of fatigue strength is also increasing due to increasingly sophisticated constructions. Therefore, the focus in materials research is currently on resistance to cyclic stresses, especially in the area of high-performance concretes. Various reasearchers has been detected a heating of test specimens
at higher load-speed during pressure swell tests to generate Wöhler lines. For this reason, this study is focused on the heating in relation to ultra-high-strength concrete.
Using a comprehensive parameter study, an overview of the significant influencing variables on the heating process could be given. On the one hand, an internal friction potential which increases with decreasing maximum grain size and due to growing damage, could be indetified as an important causes of temperature generation. On the other hand, the applied energy per load cycle is decisive. Unlike the fatigue strength of concrete, which mainly depends on the maximum stress, the heating per load cycle is dependent on the amplitude. The load frequency only influences the measurable heating by changing the time period available per load change for
temperature release. But the heating per load cycle is independent of the load frequency.
A negative influence of the specimen heating could be observed in the significant reduction of the number of cycles to failure compared to tests in which there is no significant increase in temperature. Based on previous studies on high-strength concretes, various authors propose an adaptation of the test procedure to minimise the temperature development in the specimen. The present work proposes a method in which heating is allowed in favour of time-efficient testing and the maximum temperature is taken into account in the results. The static compressive strength,
which is temperature-dependent, could be identified as a main cause of premature failure in the case of strong heating. If the temperature increases, the compressive strength is reduced simultaneously. This leads to a change in the related stress cycle in force-controlled pressure swell tests with constant load cycle. The increasing related maximum stresslevel causes finally a premature fatigue failure. All tests that fail before the calculated expected value heat up until failure. This leads to a permanently changing stress amplitude over the duration of the test. In the evaluation, a changeable load cycle cannot be used for the classification in Wöhler
diagrams. Due to the fact that the use of the load input values leads to an underestimation of the fatigue strength, an equivalent constant stress cycle must be determined, which takes into account the strength change of the concrete. Based on the pressure swell tests carried out and the temperature-dependent compressive strength, an analytical method was developed. Using the initial load amplitude as well as the measured maximum temperature, an adjusted maximum stress level can be calculated. The achieved number of cycles to failure can be entered in a Wöhler diagram with the calculated maximum stress level. This method is finally verified for the ultra-high strength concrete investigated in further detail for a wide range of load configurations and additionally for test results of a high-strength concrete.:Inhaltsverzeichnis
1 Einleitung und Aufbau 1
1.1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Stand des Wissens 5
2.1 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Betonermüdung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Ultrahochfester Beton (UHPC) . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 UHPC unter Ermüdungsbeanspruchung . . . . . . . . . . . . . . . . . . . 14
2.2 Einfluss der Temperatur auf die statische Druckfestigkeit . . . . . . . . . . . . . . 15
2.2.1 Wissenschaftliche Untersuchungen . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Regelung nach fib Model Code 2010 (2012) . . . . . . . . . . . . . . . . . 17
2.3 Betonerwärmung bei zyklischen Versuchen – Wissensstand bis 2017 . . . . . . . . 18
2.3.1 Einflussparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Temperaturentwicklung im Probekörper . . . . . . . . . . . . . . . . . . . 23
2.4 Zielstellung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Betonerwärmung bei zyklischen Versuchen - Wissensstand ab 2017 . . . . . . . . 24
2.5.1 Elsmeier - Parameterstudie zur Erwärmung von hochfesten Vergussbetonen 24
2.5.2 Bode - Energetische Auswertung von Ermüdungsversuchen . . . . . . . . . 28
2.5.3 Schneider - Frequenzeinfluss auf den Ermüdungswiderstand von hochfestem
Beton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Markert - Feuchte- und Wärmeeinfluss auf die Ermüdungsschädigung von
HPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Zusammenfassung und Abgrenzung . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 Eigene Forschung 37
3.1 Grundlagen zur Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 Herstellung, Lagerungsbedingungen und Probekörpervorbereitung . . . . . 39
3.1.3 Probengeometrie und Messapplikationen . . . . . . . . . . . . . . . . . . . 39
3.1.4 Versuchsdurchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.5 Betonchargen und Versuchsmatrix . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Auswertung von Temperaturmesswerten . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Temperaturentwicklung und -verteilung im Probekörper . . . . . . . . . . . . . . 46
3.4 Parameterstudie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 “Experimental Investigations on the Temperature Increase of Ultra-High
Performance Concrete under Fatigue Loading“ Deutscher et al. (2019) . . 49
3.4.2 “Experimental Investigations on Temperature Generation and Release
of Ultra-High Performance Concrete during Fatigue Tests“ Deutscher
et al. (2020a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 “Heating rate with regard to temperature release of UHPC under cyclic
compressive loading“ Deutscher et al. (2021a) . . . . . . . . . . . . . . . . 86
3.4.4 “Influence of the compressive strength of concrete on the temperature
increase due cyclic loading“ Deutscher et al. (2020b) . . . . . . . . . . . . 98
3.4.5 Ergänzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.6 Zusammenfassung der Parameterstudie . . . . . . . . . . . . . . . . . . . . 116
3.5 Vergleich mit dem Stand des Wissens . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.1 Spannungsspiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Frequenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.3 Größtkorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.4 Betonfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.5.5 Probenalter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.6 Berücksichtigung der Temperatur bei der Versuchsbewertung . . . . . . . . . . . 122
3.6.1 “Influence of temperature on the compressive strength of high performance
and ultra-high performance concretes“ Deutscher et al. (2021b) . . . . . . 123
3.6.2 “Consideration of the heating of high-performance concretes during cyclic
tests in the evaluation of results“ Deutscher (2021) . . . . . . . . . . . . . 134
3.6.3 Verifizierung an einem HPC . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4 Zusammenfassung und Ausblick 153
4.1 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5 Allgemeine Ergänzungen A1
5.1 Materialkennwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1
5.1.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A3
5.2 Druckfestigkeit unter Temperatureinfluss . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.1 Klimakammerlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4
5.2.2 Wasserlagerung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.2.3 getrocknet im Trockenofen . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3 zyklische Druckschwellversuche . . . . . . . . . . . . . . . . . . . . . . . . . . . . A5
5.3.1 UHPC 1 Charge I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A7
5.3.2 UHPC 2 Charge II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A11
5.3.3 UHPC 1 Charge III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A16
5.3.4 Mörtel Charge IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A20
5.3.5 NC 1 Charge V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A21
5.3.6 UHPC 1 Charge VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A22
5.3.7 UHPC 1 Charge VII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A23
5.3.8 NC 2 Charge VIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A28
5.4 Restfestigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.1 UHPC 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A30
5.4.2 UHPC 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A31
|
22 |
Non-Waste-Wachsschalungen: Neuartige Präzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-BauteilenBaron, Sarah, Mainka, Jeldrik, Hoffmeister, Hans Werner, Dröder, Klaus, Kloft, Harald 21 July 2022 (has links)
Die neuen 3D-Entwurfs-, Berechnungs- und Fertigungsverfahren in Kombination mit dem Werkstoff ultrahochfester Beton (UHPC) bieten das Potenzial, den Beton-Leichtbau zu revolutionieren [1]. Die Herausforderung bei der Herstellung von geometrisch komplexen und hochpräzisen UHPC-Bauteilen liegt dabei im Schalungsbau. Da bisher keine verfügbaren abfallfreien und somit nachhaltigen alternativen Schalungsmaterialien bzw. -systeme identifiziert werden konnten, wurde der Forschungsansatz entwickelt, frei geformte Schalungen für Betonbauteile unter Verwendung von CNC-gefrästen recycelbaren Industriewachsen zu verwenden. Die Erforschung dieses Ansatzes hin zu einer anwendbaren Non-Waste-Schalungstechnologie wurde in einem gemeinsamen Forschungsprojekt des Instituts für Werkzeugmaschinen und Fertigungstechnik (IWF) und
des Instituts für Tragwerksentwurf (ITE) der TU Braunschweig durchgeführt.
Im Folgenden werden die wesentlichen Inhalte des Vorhabens, ausgehend von der Auswahl geeigneter Wachse, über die Untersuchung der Zerspanbarkeit bis hin zur Betonierung und anschließenden Analyse der Schalungen und Abgüsse, vorgestellt und diskutiert. Grundlegende Erkenntnisse wurden u. a. bereits 2016 in [2]–[5]
veröffentlicht. Diese werden hier teilweise wiedergegeben und zudem mit zusätzlichen Informationen ergänzt. Die wesentlichen Erkenntnisse aus dem Forschungsvorhaben werden zusammengefasst. Ausführliche Informationen zur Entwicklung der Non-Waste-Wachsschalungstechnologie finden sich in der 2019 veröffentlichten Dissertation von Jeldrik Mainka [6]. / The new 3D design, calculation and manufacturing methods in combination with ultra-high strength concrete (UHPC) off er the potential to revolutionise lightweight concrete construction [1]. The challenge in the production of geometrically complex and high-precision UHPC components lies in formwork construction. As no available waste-free and thus sustainable alternative formwork materials or systems have been identified so far, the research approach was developed to use freely shaped formwork for concrete components using CNC-milled recyclable industrial waxes. The research of this approach towards an applicable non-waste formwork technology was carried out in a joint research project of the Institute for Machine Tools and Production Engineering (IWF) and the Institute of Structural Design (ITE) of the Technical University of Braunschweig.
In the following, the main contents of the project, starting with the selection of suitable waxes, the investigation of machinability up to the concreting and subsequent analysis of the formwork and castings are presented and discussed. Basic findings have already been published in 2016 in [2]–[5]. These are partly reproduced here and supplemented with additional information. The main findings of the research project are summarised. Detailed information on the development of non-waste wax formwork technology can be found in the dissertation by Jeldrik Mainka [6], published in 2019.
|
23 |
Multiscale modeling and design of ultra-high-performance concreteEllis, Brett D. 13 January 2014 (has links)
Ultra-High-Performance Concretes (UHPCs) are a promising class of cementitious materials possessing mechanical properties superior to those of Normal Strength Concretes (NSCs). However, UHPCs have been slow to transition from laboratory testing to insertion in new applications, partly due to an intuitive trial-and-error materials development process. This research seeks to addresses this problem by implementing a materials design process for the design of UHPC materials and structures subject to blast loads with specific impulses between 1.25- and 1.5-MPa-ms and impact loads resulting from the impact of a 0.50-caliber bullet travelling between 900 and 1,000 m/s. The implemented materials design process consists of simultaneous bottom-up deductive mappings and top-down inductive decision paths through a set of process-structure-property-performance (PSPP) relations identified for this purpose. The bottom-up deductive mappings are constructed from a combination of analytical models adopted from the literature and two hierarchical multiscale models developed to simulate the blast performance of a 1,626-mm tall by 864-mm wide UHPC panel and the impact performance of a 305-mm tall by 305-mm wide UHPC panel. Both multiscale models employ models at three length scales – single fiber, multiple fiber, and structural – to quantify deductive relations in terms of fiber pitch (6-36 mm/revolution), fiber volume fraction (0-2%), uniaxial tensile strength of matrix (5-12 MPa), quasi-static tensile strength of fiber-reinforced matrix (10-20 MPa), and dissipated energy density (20-100 kJ/m²). The inductive decision path is formulated within the Inductive Design Exploration Method (IDEM), which determines robust combinations of properties, structures, and processing steps that satisfy the performance requirements. Subsequently, the preferred material and structural designs are determined by rank order of results of objective functions, defined in terms of mass and costs of the UHPC panel.
|
24 |
Alternatives to Steel Grid Bridge DecksSaleem, Muhammad A 08 April 2011 (has links)
Most of the moveable bridges use open grid steel decks, because these are factory assembled, light-weight, and easy to install. Open grid steel decks, however, are not as skid resistant as solid decks. Costly maintenance, high noise levels, poor riding comfort and susceptibility to vibrations are among the other disadvantages of these decks. The major objective of this research was to develop alternative deck systems which weigh no more than 25 lb/ft2, have solid riding surface, are no more than 4-5 in. thick and are able to withstand prescribed loading. Three deck systems were considered in this study: ultra-high performance concrete (UHPC) deck, aluminum deck and UHPC-fiber reinforced polymer (FRP) tube deck.
UHPC deck was the first alternative system developed as a part of this project. Due to its ultra high strength, this type of concrete results in thinner sections, which helps satisfy the strict self-weight limit. A comprehensive experimental and analytical evaluation of the system was carried out to establish its suitability. Both single and multi-unit specimens with one or two spans were tested for static and dynamic loading. Finite element models were developed to predict the deck behavior. The study led to the conclusion that the UHPC bridge deck is a feasible alternative to open grid steel deck.
Aluminum deck was the second alternative system studied in this project. A detailed experimental and analytical evaluation of the system was carried out. The experimental work included static and dynamic loading on the deck panels and connections. Analytical work included detailed finite element modeling. Based on the in-depth experimental and analytical evaluations, it was concluded that aluminum deck was a suitable alternative to open grid steel decks and is ready for implementation.
UHPC-FRP tube deck was the third system developed in this research. Prestressed hollow core decks are commonly used, but the proposed type of steel-free deck is quite novel. Preliminary experimental evaluations of two simple-span specimens, one with uniform section and the other with tapered section were carried out. The system was shown to have good promise to replace the conventional open grid decks. Additional work, however, is needed before the system is recommended for field application.
|
25 |
Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and TestingD'Alessandro, Kacie Caple 28 August 2013 (has links)
Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC.
Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC.
UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods.
A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative for either placement method. / Ph. D.
|
26 |
New Connection Details to Connect Precast Cap Beams to Precast Columns Using Ultra High Performance Concrete (UHPC) for Seismic and Non-seismic RegionsShafieifar, Mohamadreza 17 October 2018 (has links)
Several connection details have been developed for the connection of precast cap beams to precast columns in Accelerated Bridge Construction (ABC) applications. Currently, the suggested details involve some form of either reinforcement or portion of the precast column to penetrate inside the cap beam. Such details present many challenges in the field, such as necessitating bundling of reinforcement in the cap beam or creating a congested reinforcement arrangement. Furthermore, closer inspection of some of the test data indicates that for currently used details, cap beams could sustain some damages during major seismic events, whereas they are designed to be capacity protected. Additionally, construction of such details demands precision.
To overcome these challenges, two new connection details are envisioned. Both details completely eliminate penetrating of column into the cap beam. In the first detail, the rebar of the cap beam and the column are spliced in the column and joined with a layer of Ultra High Performance Concrete (UHPC). The use of UHPC in the splice region allows the tension development of reinforcing bars over a short length. High workability of UHPC and large tolerances inherent with the suggested details can facilitate and accelerate the on-site construction. In the second detail, to confine the plastic hinge with a limited length in the column, two layers of UHPC were employed. Confining the plastic hinge is achieved by sandwiching a desired length of the column, using normal strength concrete (plastic hinge region) in between two layers of UHPC. The most interesting aspect of this detail is the exact location and length of the plastic hinge.
The primary goal of this research is to provide a description of the newly developed details, verifying their structural performance and recommendation of a design guide. These goals are achieved through a diverse experimental and numerical program focused on the proposed connections. Results show that both details are equally applicable to seismic applications and able to achieve adequate levels of ductility. Lack of failure in splice region indicated that UHPC can provide a good confinement and shear capacity even when confining transverse reinforcement was not used.
|
27 |
Quantifying Ultra-high Performance Concrete Flexural System Mechanical ResponseXiao, Yulin 01 January 2014 (has links)
The research and application of Ultra-high Performance Concrete (UHPC) has been developed significantly within the last 1-2 decades. Due to the specific property of high strength capacity, it is potential to be used in bridge deck system without shear reinforcement so that it provides even lighter self-weight of the deck. However, one of the shear component, dowel action, has not been adequately investigated in the past. In this dissertation, a particular test was designed and carried out to fully investigate the dowel action response, especially its contribution to shear resistance. In addition, research on serviceability and fatigue behaviors were expanded as well to delete the concern on other factors that may influence the application to the deck system. Both experimental and analytical methods including finite element modeling, OpenSees modeling and other extension studies were presented throughout the entire dissertation where required.
|
28 |
Static and Blast Performance of Reinforced Concrete Beams Built with High-Strength Steel and Stainless Steel ReinforcementLi, Yang 06 October 2022 (has links)
High-strength steel (HSS) conforming to ASTM A1035 is becoming increasingly used in various structural applications, including in high-rise buildings and bridges. Due to their chemistry and manufacturing process, ASTM A1035 steel bars result in a combination of high tensile strength to yield ratio and varying levels of corrosion resistance. One potential application of ASTM A1035 bars is in the blast-resistant design of concrete structures, where their use can allow for reduced steel congestion, and increased blast resistance. Despite their high initial cost, stainless steel (SS) reinforcing bars are also seeing increased use in concrete construction. Solid stainless steel bars are referenced in ASTM A955, which is applicable to various stainless steel alloys. In addition to their inherent corrosion resistance, most stainless steel bars possess greater tensile strength, and importantly, exceptional ductility, when compared to ordinary steel reinforcement. This unique combination of strength and ductility makes SS bars well-suited for blast design applications.
The overarching aim of this thesis is to gain better understanding of the blast behavior of RC flexural members designed with high-strength (HSS) and stainless steel (SS) reinforcement. This objective is achieved through a combined experimental and numerical research program. As part of the experimental research, a large set of beams, subdivided into three series, are tested under either quasi-static bending or simulated blast loads using the University of Ottawa shock-tube. Series 1 (HSC-HSS) and Series 2 (HSC-SS) aim at examining the effects of blast detailing (as recommended in modern blast codes,) on the quasi-static, blast and post-blast behaviour of high-strength concrete (HSC) beams reinforced with either ASTM A1035 high-strength bars (8 beams) or ASTM A955 stainless steel bars (16 beams). In addition to the influence of detailing, the effects of steel grade/type, steel ratio and steel fibers are also studied. Series 3 further studies the benefits of combining higher grade or higher ductility reinforcement, with more advanced ultra-high performance concrete (UHPC). This series includes 20 UHPC beams built with either ordinary, HSS or SS reinforcing bars (UHPC-NSS, UHPC-HSS and UHPC-SS). In addition to the effect of steel grade/type, concrete type, steel ratio and steel detailing are also studied.
The results from Series 1 and 2 demonstrate the benefits of implementing high-strength and stainless steel reinforcement in HSC beams subjected to blast loads, where their use leads to increased blast capacity, reduced support rotations, and higher damage tolerance. The results further demonstrate the benefits of “blast detailing” on the ductility and resilience of such beams, under both static and blast loads. The results also show that the use of steel fibers can be used to relax blast detailing in the beams with high-strength or stainless steel by increasing the required tie spacing from d/4 to d/2. The results from Series 3 confirm that the use of UHPC in beams enhances flexural response (in terms of strength and stiffness), which in turn results in superior blast resistance. Conversely, the high bond capacity of UHPC makes such beams more vulnerable to bar fracture. Increasing the steel ratio is found to effectively increase the failure displacement and ductility of the UHPC beams. The use of high-strength steel is found to increase load capacity and blast resistance, while the use of stainless steel results in remarkable ductility, which further enhances beam response under blast loading.
As part of the numerical research program, the static and blast responses of the test beams are simulated using either 2D or 3D finite element (FE) modelling, using software VecTor2 and LS-DYNA. The numerical results show that the 2D FE modelling using software VecTor2 can provide reliable predictions of the static and blast responses of the HSS or SS reinforced HSC beams built with varying detailing, in terms of load-deflection response, cracking patterns, failure mode, displacement time histories and dynamic reactions. Likewise, the 3D FE modelling using software LS-DYNA with appropriate modelling of UHPC (using the Winfrith Concrete or CSCM models) can well predict the blast responses of UHPC beams with ordinary, high-strength and stainless steel, in terms of displacement/load-time histories, damage and failure modes.
|
29 |
Self-sensing ultra-high performance concrete: A reviewGuo, Y., Wang, D., Ashour, Ashraf, Ding, S., Han, B. 02 November 2023 (has links)
Yes / Ultra-high performance concrete (UHPC) is an innovative cementitious composite, that has been widely applied in numerous structural projects because of its superior mechanical properties and durability. However, ensuring the safety of UHPC structures necessitates an urgent need for technology to continuously monitor and evaluate their condition during their extended periods of service. Self-sensing ultra-high performance concrete (SSUHPC) extends the functionality of UHPC system by integrating conductive fillers into the UHPC matrix, allowing it to address above demands with great potential and superiority. By measuring and analyzing the relationship between fraction change in resistivity (FCR) and external stimulates (force, stress, strain), SSUHPC can effectively monitor the crack initiation and propagation as well as damage events in UHPC structures, thus offering a promising pathway for structural health monitoring (SHM). Research on SSUHPC has attracted substantial interests from both academic and engineering practitioners in recent years, this paper aims to provide a comprehensive review on the state of the art of SSUHPC. It offers a detailed overview of material composition, mechanical properties and self-sensing capabilities, and the underlying mechanisms involved of SSUHPC with various functional fillers. Furthermore, based on the recent advancements in SSUHPC technology, the paper concludes that SSUHPC has superior self-sensing performance under tensile load but poor self-sensing performance under compressive load. The mechanical and self-sensing properties of UHPC are substantially dependent on the type and dosage of functional fillers. In addition, the practical engineering SHM application of SSUHPC, particularly in the context of large-scale structure, is met with certain challenges, such as environment effects on the response of SSUHPC. Therefore, it still requires further extensive investigation and empirical validation to bridge the gap between laboratory research and real engineering application of SSUHPC. / The full-text of this article will be released for public view at the end of the publisher embargo on 28 Dec 2024.
|
30 |
Flexural Redistribution in Ultra-High Performance Concrete Lab SpecimensMoallem, Mohammad Reza 30 July 2010 (has links)
No description available.
|
Page generated in 0.0249 seconds