• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Highly Accurate Wireless Wearable Human Locomotion Tracking and Gait Analysis System via UWB Radios

Shaban, Heba Ahmed 09 June 2010 (has links)
Gait analysis is the systematic study of human walking. Clinical gait analysis is the process by which quantitative information is collected for the assessment and decision-making of any gait disorder. Although observational gait analysis is the therapist's primary clinical tool for describing the quality of a patient's walking pattern, it can be very unreliable. Modern gait analysis is facilitated through the use of specialized equipment. Currently, accurate gait analysis requires dedicated laboratories with complex settings and highly skilled operators. Wearable locomotion tracking systems are available, but they are not sufficiently accurate for clinical gait analysis. At the same time, wireless healthcare is evolving. Particularly, ultra wideband (UWB) is a promising technology that has the potential for accurate ranging and positioning in dense multi-path environments. Moreover, impulse-radio UWB (IR-UWB) is suitable for low-power and low-cost implementation, which makes it an attractive candidate for wearable, low-cost, and battery-powered health monitoring systems. The goal of this research is to propose and investigate a full-body wireless wearable human locomotion tracking system using UWB radios. Ultimately, the proposed system should be capable of distinguishing between normal and abnormal gait, making it suitable for accurate clinical gait analysis. / Ph. D.

Page generated in 0.0958 seconds