• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NOVEL ULTRA HIGH TEMPERATURE MATERIAL PROCESSING, CHARACTERIZATION, AND MODELING

Glenn R Peterson (16558704) 18 July 2023 (has links)
<p>For many applications within the defense, aerospace, and electricity-producing industries, available material choices for high-performance devices that fulfill necessary requirements are limited. Choosing a metallic material or a ceramic material may be optimal for only some of the required properties. For instance, choosing a metal may optimize ductility but compromise oxidation resistance, yield strength, or creep resistance. Of potential interest, ceramic-metal (cermet) composites can address several fundamental concerns such as high temperature mechanical toughness and stiffness and oxidation/corrosion resistance. However, cost-effective, scalable manufacturing of complex-shaped, high-temperature cermets can be challenging.</p> <p>A cermet of interest is niobium and yttrium oxide, Y2O3. Both materials exhibit high melting points with similar coefficients of thermal expansion. Basic thermodynamic calculations suggest that these materials are chemically compatible, and that Y2O3/Nb cermets may be generated by reactive melt infiltration using the patented Displacive Compensation of Porosity (DCP) process. With the DCP process, a liquid fills a porous perform, and a displacement reaction occurs to produce products of larger solid volume. This reaction yields the cermet of interest, formed in a reduced-stress condition, while maintaining a generally near net shape and high relative density.</p> <p>In order to get to the point of designing cermet components for various applications, a focus of this work has been to create a Y2O3/Nb composite by hot pressing powders at high temperatures at the predicted stoichiometric ratios, and then characterizing the thermal and mechanical properties. The reduction reaction between liquid yttrium and solid niobium (IV) oxide (NbO2) was then characterized to evaluate kinetic mechanisms affecting the reaction rate which is necessary for future DCP-based cermet component manufacturing.</p> <p>Lastly, the mechanical behavior of this cermet was modeled and compared to another cermet processed using liquid metal infiltration using a temperature-dependent elasto-visco-plastic self-consistent model. The effects of cooling from processing temperatures, as well as thermally cycling of these cermets, were quantified. As high temperature experiments can be time intensive with high costs, it is advantageous to have a computationally efficient, desktop design tool to quantify the impacts of changing processing and use conditions on material performance.</p>
2

Novel reaction processing techniques for the fabrication of ultra-high temperature metal/ceramic composites with tailorable microstructures

Lipke, David William 20 December 2010 (has links)
Ultra-high temperature (i.e., greater than 2500°C) engineering applications present continued materials challenges. Refractory metal/ceramic composites have great potential to satisfy the demands of extreme environments (e.g., the environments found in solid rocket motors upon ignition), though general scalable processing techniques to fabricate complex shaped parts are lacking. The work embodied in this dissertation advances scientific knowledge in the development of processing techniques to form complex, near net-shape, near net-dimension, near fully-dense refractory metal/ceramic composites with controlled phase contents and microstructure. Three research thrusts are detailed in this document. First, the utilization of rapid prototyping techniques, such as computer numerical controlled machining and three dimensional printing, for the fabrication of porous tungsten carbide preforms and their application with the Displacive Compensation of Porosity process is demonstrated. Second, carbon substrates and preforms have been reactively converted to porous tungsten/tungsten carbide replicas via a novel gas-solid displacement reaction. Lastly, non-oxide ceramic solid solutions have been internally reduced to create intragranular metal/ceramic micro/nanocomposites. All three techniques combined have the potential to produce nanostructured refractory metal/ceramic composite materials with tailorable microstructure for ultra-high temperature applications.

Page generated in 0.105 seconds