Spelling suggestions: "subject:"ultrashort process"" "subject:"u1trashort process""
1 |
Nano-structuration de matériaux optiques par lasers ultra-brefsMezel, Candice 18 November 2010 (has links)
La structuration de matériaux transparents (verre, eau, ...) irradiés par des impulsions lasers intenses brèves (nanoseconde) et ultra-brèves (femtoseconde) trouve de nombreuses applications dans les domaines de la biomédecine, des nano-optiques ou encore de l'endommagement d'optiques par des lasers de puissance. Dans un premier temps, nous avons modélisé le processus d'éjection qui se produit lors du transfert d'un matériau liquide (eau, hydrogel) lorsque la cible est irradiée par un laser nanoseconde. Le matériau est ici chauffé par conduction thermique via un ablateur métallique, et l'éjection est réalisée via un processus purement hydrodynamique. Si l'on considère maintenant cette même technique réalisée avec un laser femtoseconde, on peut envisager de transférer des volumes de matière nanométriques, ce qui correspond à la taille typique d'une molécule. En régime femtoseconde, les processus d'absorption de l'énergie sont différents, de même que les échelles de temps sur lesquels ils se produisent. Si l'impulsion laser est suffisamment focalisée dans le matériau, un plasma se forme dans la zone d'absorption, où la densité d'énergie atteinte est supérieure à l'énergie de liaison des matériaux considérés (eau, silice, mica). Un modèle d'ionisation et de chauffage des électrons a été mis en place et a été couplé à un code de propagation instantanée des ondes électromagnétiques. Trois applications ont été étudiées, correspondant à trois configurations laser/cible différentes : (1) un processus de formation de jets liquides et solides prometteur pour la réalisation de nano-optiques, (2) la formation de nanocavités à l'intérieur d'un volume de silice pouvant servir comme stockage d'information, (3) l'étude des seuils d'endommagement et d'ablation de la silice en surface. Dans chaque cas, la densité d'énergie absorbée a été utilisé comme donné initiale pour le code d'hydrodynamique CHIC qui a permis de suivre l'évolution du matériau après l'irradiation : ondes de compression, changements de phase, etc... La résolution couplée de la propagation du laser et de son absorption dans la matière nous a permis de mener une étude à la fois qualitative et quantitative de l'interaction. La comparaison avec les données expérimentales a aboutit à l'amélioration du modèle d'absorption et de chauffage. / Abstract
|
Page generated in 0.0396 seconds