• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A fundamental study to enable ultrasonic structural health monitoring of a thick-walled composite over-wrapped pressure vessel

McKeon, Peter 07 January 2016 (has links)
A structural health monitoring system is desired to monitor the integrity of cylindrical, multi-layer carbon over-wrapped pressure vessels intended to house hydrogen at high pressures. In order to develop the system based on ultrasonic guided wave technology, the interaction between ultrasonic guided waves and defect types of interest must be understood. Finite element models in two and three dimensions are developed to predict guided wave motion in the reservoirs. Key parameters are optimized including frequency range, excited modes, detected modes, and transducer dimensions. A novel baseline subtraction technique in the frequency wavenumber domain is presented to increase lower level detection limits. Some experiments are carried out to corroborate the findings in the finite element environment.
2

Signal processing methods for defect detection in multi-wire helical waveguides using ultrasonic guided waves

Yucel, Mehmet Kerim January 2015 (has links)
Non-Destructive Testing of industrial components carries vital importance, both financially and safety-wise. Among all Non-Destructive techniques, Long Range Ultrasonic Testing utilizing the guided wave phenomena is a young technology proven to be commercially valid. Owing to its well-documented analytical models, Ultrasonic Guided Waves has been successfully applied to cylindrical and plate-like structures. Its applications to complex structures such as multi-wire cables are fairly immature, mainly due to the high complexity of wave propagation. Research performed by the author approaches the long range inspection of overhead transmission line cables using ultrasonic guided waves. Existing studies focusing on guided wave application on power cables are extremely limited in inspection range, which dramatically degrades its chances of commercialization. This thesis consists of three main chapters, all of which approaches different problems associated with the inspection of power cables. In the first chapter, a thorough analysis of wave propagation in ACSR (most widely used power cable) cables is conducted. It is shown that high frequency guided waves, by concentrating the energy on the surface layers, can travel much further in the form of fundamental longitudinal wave mode, than previous studies have shown. Defect detection studies proved the system’s capability of detecting defects which introduce either increase or decrease in cross sectional area of the cable. Results of the chapter indicate the detectability of defects as small as 4.5% of the cross sectional area through a 26.5 meter long cable without any post-processing. In the second chapter, several algorithms are proposed to increase the inspection range and signal quality. Well-documented wavelet-denoising algorithm is optimized for power cables and up to 24% signal-to-noise ratio improvement is achieved. By introducing an attenuation correction framework, a theoretical inspection range of 75 meters is presented. A new framework combining dispersion compensation and attenuation correction is proposed and verified, which shows an inspection range of 130 meters and SNR improvement up to 8 dBs. Last chapter addresses the accurate localization of structural defects. Having proven the optimum excitation and related wave propagation in ACSR cables, a system having a more complex wave propagation characteristics is studied. A new algorithm combining pulse compression using Maximal Length Sequences and dispersion compensation is applied to multi-modal signals obtained from a solid aluminum rod. The algorithm proved to be able to improve signal quality and extract an accurate location for defects. Maximal Length Sequences are compared to chirp signals in terms of SNR improvement and localization, which produced favourable results for MLS in terms of localization and for chirp in terms of SNR improvement.
3

Omnidirectional and unidirectional SH0 mode transducer arrays for guided wave evaluation of plate-like structures

Rodrigues Marques, Hugo January 2016 (has links)
Structures made of plate-like components are common in a variety of industries where the impacts of structural failures are severe. In many cases these structures are surrounded and only partially accessible, such as storage tanks and bridges, making them difficult to inspect frequently. The application of ultrasonic Guided Waves (GWs) in the evaluation and monitoring of relatively large plate-like structures is evermore a feasible option with the continuous development of transducer arrays. The use of transducer arrays is however complex due to directional control and the existence of many GW modes. Aimed at the evaluation of plate-like structures, in this research two piezoelectric transducer arrays respectively capable of omnidirectional and unidirectional control of the fundamental GW shear mode in plates (SH0) with above 20 dB mode purity are successfully designed, produced and validated. Omnidirectionality facilitates full structural evaluation coverage and can lead to defect mapping of large volumes with relatively few transducers. A unidirectional beam with relatively high mode purity facilitates evaluation of specific structural locations. Preference to the SH0 mode was given because of its non-dispersive and in-plane propagation properties making it more suitable than other GW modes to propagation in structures surrounded by fluid material. To enable the array development, a number of monolithic piezoelectric thickness-shear transducers of varied area were characterised with respect to GW mode directionality, amplitude and SH0 mode purity. The characterisation of each thickness-shear transducer allows for optimised superposition manipulation for specific applications. A single characterised shear transducer was selected for use in the development of omnidirectional and unidirectional SH0 mode transducer arrays. To aid development a linear superposition analysis model was produced and used to predict for a circular array design the optimum parameters for omnidirectional SH0 mode transmission with significant mode purity. A range of parameter combinations were evaluated and their predicted influence on array performance was characterised. The same method was employed to optimise a dual row linear array design for the unidirectional transducer array. All results were validated by FE models and later with empirical data. Both developed transducer arrays were characterised with respect to GW mode directionality, magnitude and SH0 mode purity. Both their detection sensitivity to pertinent defects and structures was validated, demonstrating relevance to Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) applications.
4

Laser generated thermoelastic waves in finite and infinite transversely isotropic cylinders

Chitikireddy, Ravi January 2011 (has links)
This thesis presents a theoretical study of thermoelastic guided waves in cylinders in the context of Lord-Shulman generalized theory of thermoelasticity. Two different methods were formulated to study dispersion relations in infinite cylinders. One of them is a Semi Analytical Finite Element (SAFE) method and the other is an analytical method. In the SAFE method, the dispersion equation has been formulated as a generalized eigenvalue problem by treating radial displacement and temperature with a one dimensional finite element model through the thickness of the cylinder. In the analytical method, displacement potentials are introduced to obtain the dispersion relations of guided wave modes. This method is applicable to isotropic cylinders and has been developed primarily to cross check the SAFE formulation. Frequency spectra obtained by both methods for an isotropic cylinder have shown excellent agreement with each other. Since the SAFE method can be used for an anisotropic composite cylinder, guided wave modes for anisotropic and composite cylinders are presented. Transient analysis of ultrasonic guided waves generated by concentrated heating of the outer surface of an infinite anisotropic cylinder has also been studied. The SAFE method is employed to model the response of a cylinder due to a pulsed laser focused on its surface. Green’s functions were constructed numerically by superposition of guided wave modes in frequency and wave number domains. Time histories of the propagating modes are then calculated by applying an inverse Fourier transformation in the time domain. Transient radial displacements of longitudinal and flexural modes of a silicon nitride cylinder are presented. Propagation of thermoelastic waves in finite length circular cylinders have also been investigated. The SAFE method is used to simulate the guided wave modes in the cylinder. Frequency spectra obtained by the SAFE formulation, for a finite length transversely isotropic cylinder, are validated by comparing the numerical results with relevant publications. Frequency spectra for axisymmetric and asymmetric modes in a silicon nitride finite cylinder with both ends insulated and restrained by frictionless rigid walls are presented. The plain strain problem of circumferential guided waves is also studied and the results are validated for an isothermal case.
5

Laser generated thermoelastic waves in finite and infinite transversely isotropic cylinders

Chitikireddy, Ravi January 2011 (has links)
This thesis presents a theoretical study of thermoelastic guided waves in cylinders in the context of Lord-Shulman generalized theory of thermoelasticity. Two different methods were formulated to study dispersion relations in infinite cylinders. One of them is a Semi Analytical Finite Element (SAFE) method and the other is an analytical method. In the SAFE method, the dispersion equation has been formulated as a generalized eigenvalue problem by treating radial displacement and temperature with a one dimensional finite element model through the thickness of the cylinder. In the analytical method, displacement potentials are introduced to obtain the dispersion relations of guided wave modes. This method is applicable to isotropic cylinders and has been developed primarily to cross check the SAFE formulation. Frequency spectra obtained by both methods for an isotropic cylinder have shown excellent agreement with each other. Since the SAFE method can be used for an anisotropic composite cylinder, guided wave modes for anisotropic and composite cylinders are presented. Transient analysis of ultrasonic guided waves generated by concentrated heating of the outer surface of an infinite anisotropic cylinder has also been studied. The SAFE method is employed to model the response of a cylinder due to a pulsed laser focused on its surface. Green’s functions were constructed numerically by superposition of guided wave modes in frequency and wave number domains. Time histories of the propagating modes are then calculated by applying an inverse Fourier transformation in the time domain. Transient radial displacements of longitudinal and flexural modes of a silicon nitride cylinder are presented. Propagation of thermoelastic waves in finite length circular cylinders have also been investigated. The SAFE method is used to simulate the guided wave modes in the cylinder. Frequency spectra obtained by the SAFE formulation, for a finite length transversely isotropic cylinder, are validated by comparing the numerical results with relevant publications. Frequency spectra for axisymmetric and asymmetric modes in a silicon nitride finite cylinder with both ends insulated and restrained by frictionless rigid walls are presented. The plain strain problem of circumferential guided waves is also studied and the results are validated for an isothermal case.
6

Contrôle non destructif de composites par ondes ultrasonores guidées, générées et détectées par multiéléments / Non-destructive testing of composites using ultrasonic guided waves generated and detected by phased array probes

Leleux, Alban 19 November 2012 (has links)
Une technique de Contrôle Non Destructif (CND) a été développée, permettant la génération et la détection d’ondes de Lamb guidées le long de grandes plaques constituées de différents matériaux (métal, polymère ou composite renforcé par des fibres). Basée sur l’emploi de nombreux éléments étroitement couplés à la plaque, cette technique d’inspection diffère du Structural Health Monitoring (SHM) classique car tous les éléments émetteurs ou récepteurs sont regroupés dans une zone très localisée, définie par la surface active d’une sonde multiélément matricielle, et ne sont pas fixés de manière permanente et distribuée au sein, ou en surface, de la structure testée. De plus, le principe (connu) du déphasage entre éléments est appliqué à la sonde pour la génération et la réception d’un mode de Lamb pur dans (ou provenant) de multiples directions le long de la plaque. Les lois de retards appliquées à ces éléments, aussi bien lorsque la sonde fonctionne en mode émission qu’en mode réception, prennent en compte la nature dispersive de l’onde de Lamb. Enfin, un traitement de signal spécifique est appliqué pour compenser la dispersion subie par les ondes guidées au cours de leur propagation le long de la pièce testée. Un prototype expérimental et sa modélisation par éléments finis sont présentés, ainsi que les mesures et les résultats simulés de ses performances en termes de sélectivité modale et de directivité angulaire. Concernant les applications de CND, la construction d’images, représentatives de toutes les parties de la pièce testée qui diffractent le mode guidé (bord de pièce, défauts, trous, raidisseurs, etc.), a permis de démontrer le potentiel (et quelques limites) de cette technique vis-à-vis d’une inspection rapide de grandes structures, y compris de zones éloignées de la sonde ou encore de zones difficiles d’accès. / A technique of Non-Destructive Testing (NDT) was developed for the generation and detection of Lamb waves propagating along large plates made of different materials (metal, polymer or fibre-reinforced composite). Based on the use of many elements closely coupled to the plate, this inspection technique differs from the classic Structural Health Monitoring (SHM) because all the transmitters or receivers are grouped in a very localized area, defined by the active surface of a phased array matrix probe, and are not permanently attached and distributed within or on the surface of the test structure. In addition, the principle (known) of the phase shift between the elements is applied to the probe for generating and receiving a pure Lamb mode in (or from) multiple directions along the plate. The delay laws applied to these elements, in transmit mode or receive mode, take into account the dispersive nature of the Lamb wave. Finally, a specific signal processing is applied to compensate the dispersion suffered by the guided waves during their propagation along the test piece. An experimental prototype and its finite element modeling are presented, as well as measurements and simulation results of its performances in terms of modal selectivity and angular directivity. For NDT applications, the construction of images, representing all parts of the test piece, which diffract the guided mode (edges, defects, holes, stiffeners, etc.), has demonstrated the potential (and some limits) of this technique for a quick inspection of large structures, including areas remote from the probe or areas difficult to access.
7

Array Signal Processing for Accurate Medical Ultrasound Measurements / 高精度医用超音波測定に向けたアレイ信号処理

Okumura, Shigeaki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21218号 / 情博第671号 / 新制||情||116(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 佐藤 亨, 教授 山本 衛, 教授 松田 哲也 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
8

Using the singularity frequencies of guided waves to obtain a pipe's properties and detect and size notches

Stoyko, Darryl 30 October 2012 (has links)
A survey of relevant literature on the topic of wave propagation and scattering in pipes is given first. This review is followed by a theoretical framework which is pertinent to wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approximate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE) formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes, when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e., singularities in an unblemished pipe’s displacement Frequency Response Function (FRF) coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel technique is developed to deduce such a pipe’s wall thickness and elastic properties from three cutoff frequencies. The resulting procedure is simulated numerically and verified experimentally. Agreement between the new ultrasonic procedure and traditional destructive tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate waves scattered by various open rectangular notches. The simulations show, for the first time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a displacement FRF when an axisymmetric notch is introduced. They also suggest that the new singularities depend on the properties of the parent pipe and the finite element region but effects are local to a notch. It is demonstrated further that the difference between the frequency at which a singularity introduced by a notch occurs and the nearest corresponding unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting contours of constant frequency differences, it is shown that it is usually possible to characterize the notch’s dimensions by using two modes. However, the frequency difference for a third mode may be also needed occasionally. The more general case of nonaxisymmetric notches is shown to be a straightforward extension of the axisymmetric case.
9

Using the singularity frequencies of guided waves to obtain a pipe's properties and detect and size notches

Stoyko, Darryl 30 October 2012 (has links)
A survey of relevant literature on the topic of wave propagation and scattering in pipes is given first. This review is followed by a theoretical framework which is pertinent to wave propagation in homogeneous, isotropic, pipes. Emphasis is placed on approximate solutions stemming from a computer based, Semi-Analytical Finite Element (SAFE) formulation. A modal analysis of the dynamic response of homogeneous, isotropic pipes, when subjected to a transient ultrasonic excitation, demonstrates that dominant features, i.e., singularities in an unblemished pipe’s displacement Frequency Response Function (FRF) coincide with its cutoff frequencies. This behaviour is confirmed experimentally. A novel technique is developed to deduce such a pipe’s wall thickness and elastic properties from three cutoff frequencies. The resulting procedure is simulated numerically and verified experimentally. Agreement between the new ultrasonic procedure and traditional destructive tests is within experimental uncertainty. Then a hybrid-SAFE technique is used to simulate waves scattered by various open rectangular notches. The simulations show, for the first time, that singularities distinct from the unblemished pipe’s cutoff frequencies arise in a displacement FRF when an axisymmetric notch is introduced. They also suggest that the new singularities depend on the properties of the parent pipe and the finite element region but effects are local to a notch. It is demonstrated further that the difference between the frequency at which a singularity introduced by a notch occurs and the nearest corresponding unblemished pipe’s cutoff frequency is a function of the notch’s dimensions. By plotting contours of constant frequency differences, it is shown that it is usually possible to characterize the notch’s dimensions by using two modes. However, the frequency difference for a third mode may be also needed occasionally. The more general case of nonaxisymmetric notches is shown to be a straightforward extension of the axisymmetric case.

Page generated in 0.0836 seconds