• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation aérothermique pour la gestion de la chaleur sous capot d'une motoneige

Bari, François January 2016 (has links)
Les problématiques liées à la gestion de la chaleur sous capot sont importantes lors du développement de nouveaux véhicules terrestres. Jusqu’à maintenant, les approches les plus courantes pour les caractériser et s’assurer du bon comportement des véhicules étaient principalement expérimentales. Les test sont de plus en plus remplacés par des modèles numériques permettant un gain financier et de temps considérable. L’approche numérique est désormais répandue dans l’industrie automobile, et on l’applique ici dans le cas d’une motoneige afin de caractériser son comportement aérothermique, à l’aide de l’outil CFD. L’utilisation du modèle, validé à l’aide d’essais sur le terrain, permet alors l’optimisation des paramètres influençant la gestion thermique, et ainsi l’harmonisation des traitements acoustiques appliqués en vue d’une réduction de bruit tout en respectant les besoins de refroidissement de ces appareils.
2

Numerical modeling and experimental investigation of the flow and thermal processes in a motor car vehicle underhood

Van Zyl, Josebus Maree 12 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2006. / The project aimed at numerically modeling the flow and thermal processes occurring in a Volkswagen Citi Golf Chico underhood using computational fluid dynamics (CFD). The motivation for this investigation was to develop and demonstrate the capability of CFD as an automotive analysis tool. This would allow local automobile analysts and designers enhanced analyses of the thermal and flow conditions occurring in this com-pact environment, leading to improved local vehicles. A review of relevant literature indicated that the CFD community in South Africa is small with comparison to the international sector. The application of CFD to analyse automo-biles in South Africa is limited and practised by few. This experience requires develop-ment and refinement, such that South Africa may improve vehicles manufacture in the country. The review also indicated that CFD used in the international communities pro-vides good results, promoting simulation-based engineering. The experimental investigation involved parking a vehicle in the subsonic wind tunnel intake at the Mechanical Engineering Department in Stellenbosch. This tunnel is 3.7 m wide, 4 m long and 2.8 m tall, capable of wind speeds up to 90 m/s. Various equipment including thermocouples, a thermal imager and a hand held hot-wire anemometer pro-vided temperature and velocity measurements within the underhood. A pitot-static probe connected to a pressure transducer measured the wind tunnel velocities. The numerical investigation started with the creation of a three-dimensional geometry of the underhood from measurements taken of the vehicle. This geometry, created with Solid Edge version 14, formed the domain for automatically generating discretised grids using STAR-Design version 3.2. Subsequently, boundary conditions and numerical models were applied to the grids, which included simplified fan and radiator models. The analysis concluded with results obtained from the numerical CFD simulations, per-formed with STAR-CD version 3.24. The validity and accuracy of the numerical solutions was verified and quantified with the numerical results. The evaluation consisted of two test cases (wind tunnel speeds of 0 m/s and 5 m/s), each simulated at three different grid resolutions. Each simulation con-tinued until they fully converged to a single solution. The comparison of the three simu-lations from each case indicated that the results were grid independent. The final in-spection of the results in terms of y+ values and boundary conditions indicated that the models implemented were valid. The comparison of the numerical results for temperatures and fan inlet velocities with the experimentally measured data served as a measure to quantify the applicability of CFD for underhood investigations. The comparison between the two sets of results proved acceptable, with a maximum difference of 10%, indicating that CFD is capable of predicting temperatures and flow fields with reasonable accuracy. The numerical results indicated that while the vehicle travels at higher velocities, the underhood remains well ventilated. The underhood tends to trap the hot air from the radiator and other heat sources when the vehicle remains stationary, causing the air to heat further. This can be addressed by the installation of vents in the side panels near the top of the underhood environment. This should allow the hot air to escape, possibly resulting in a significant reduction of the underhood temperatures. Momentum and energy source terms modelled the effects from the fan and radiator. These models worked well for both cases, but improvement is necessary. Special at-tention should be given to the condition where the radiator fan obstructs the flow through the radiator. A further result of the project was the establishment of a flexible foundation for conduct-ing numerical simulations on automobiles. It allows for the inclusion of additional com-ponents and the implementation of more advanced models for representing effects from various engine components.
3

Vehicle engine cooling systems: assessment and improvement of wind-tunnel based evaluation methods

Ng, Eton Yat-Tuen, eton_ng@hotmail.com January 2002 (has links)
The high complexity of vehicle front-end design, arising from considerations of aerodynamics, safety and styling, causes the airflow velocity profile at the radiator face to be highly distorted, leading to potentially reduced airflow volume for heat dissipation. A flow visualisation study showed that the bumper bar significantly influenced the cooling airflow, leading to three-dimensional vortices in its wake and generating an area of relatively low velocity across at least one third of the radiator core. Since repeatability and accuracy of on-road testing are prejudiced by weather conditions, wind-tunnel testing is often preferred to solve cooling airflow problems. However, there are constraints that limit the accuracy of reproducing on-road cooling performance from wind-tunnel simulations. These constraints included inability to simulate atmospheric conditions, limited tunnel test section sizes (blockage effects) and lack of ground effect simulations. The work presented in this thesis involved use of on-road and wind-tunnel tests to investigate the effects of most common constraints present in wind tunnels on accuracy of the simulations of engine cooling performance and radiator airflow profiles. To aid this investigation, an experimental technique for quantifying radiator airflow velocity distribution and an analytical model for predicting the heat dissipation rate of a radiator were developed. A four-hole dynamic pressure probe (TFI Cobra probe) was also used to document flow fields in proximity to a section of radiator core in a wind tunnel in order to investigate the effect of airflow maldistribution on radiator heat-transfer performance. In order to cope with the inability to simulate ambient temperature, the technique of Specific Dissipation (SD) was used, which had previously been shown to overcome this problem.

Page generated in 0.0456 seconds