• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the MEMS directional sound sensor fabricated using the SOIMUMPs process

Dritsas, Antonios. January 2008 (has links) (PDF)
Thesis (M.S. in Applied Physics and M.S. in Operations Research)--Naval Postgraduate School, June 2008. / Thesis Advisor(s): Karunasiri, Gamani ; Koyak, Robert. "June 2008." Description based on title screen as viewed on August 25, 2008. Includes bibliographical references (p. 89-90). Also available in print.
2

Performance of acoustic spread-spectrum signaling in simulated ocean channels

Pelekanos, Georgios N. 06 1900 (has links)
Approved for public release, distribution is unlimited / Direct-Sequence Spread Spectrum (DSSS) modulation is being advanced as the physical-layer basis for Seaweb undersea acoustic networking. DSSS meets the need for channel tolerance, transmission security, and multi-user access. This thesis investigates the performance of subspace-decomposition blind-equalization algorithms as alternatives to RAKE processing of DSSS signals. This approach is tailored for superior performance in time-dispersive and frequency-dispersive channels characteristic of ocean acoustic propagation. Transmitter and receiver structures are implemented in Matlab and evaluated with a statistics-based model of a doubly spread channel with additive noise. Receiver performance is examined using Monte Carlo simulation. Biterror rates versus signal-to-noise ratio are presented for various multipath assumptions, noise assumptions, and receiver synchronization assumptions. / Lieutenant, Hellenic Navy

Page generated in 0.0758 seconds