• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental driving mechanism for a rigid oscillating foil propeller /

Calderon, Antonino M., January 2001 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2001. / Bibliography: leaves 93-95. Also available online.
2

The optimization of a dual foil flapping device /

Paganucci, Craig J. January 2003 (has links) (PDF)
Thesis (M.S. in Aeronautical Engineering)--Naval Postgraduate School, September 2003. / Thesis advisor(s): Kevin D. Jones, Max F. Platzer. Includes bibliographical references (p. 55-56). Also available online.
3

Development of waterjet testing techniques /

Thornhill, Eric, January 1999 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 207-210.
4

Performance evaluation of the propulsion system for the autonomous underwater vehicle "C-SCOUT" /

Thomas, Roy, January 2003 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 177-180.
5

Propulsive Performance and Maneuver Control of Undulatory Ribbon Fin Propulsion Using Bio-inspired Robotic Systems

Unknown Date (has links)
Undulatory ribbon- n-based propulsion is an appealing propulsion mechanism due to its rich locomotor capabilities that can improve the propulsive performance and maneuverability of underwater vehicles. For instance, the swimming mechanics of weakly electric black ghost knife sh (Apteronotus albifrons) is of great interest to study because of their high swimming e ciency at low speeds and extraordinary agility such as rapid reversal swimming, hovering in presence of water disturbance, rolling and vertical swimming. In this thesis work, to facilitate our understanding on the exible undulatory ribbon n propulsion, we have four research motivations. The rst objective is to study how the use of exible rays and di erent n morphology can in uence the propulsive performance of ribbon- n propulsion. It is possible that natural swimmers using this locomotion method could take advantage of passive n motion based on the coupling of uid-structure interaction and the elasto-mechanical responses of the undulating n. Therefore, the second objective is to understand how an under-actuated undulating n can take advantage of natural dynamics of the uid-structure interaction for the propulsive force generation. In addition to the impressive propulsive performance of the undulatory n propulsion, the exceptional maneuverability of knife sh is also a key motivation that drives this thesis work. Thus, we dedicate to investigate how traveling wave shapes and actuation parameters (frequency, wavelength) can manipulate the maneuvering behaviors of a swimmer propelled by an undulating ribbon n. Lastly, we aim to uncover the e ect of varying traveling wave amplitudes and pectoral ns on its maneuvering performances. Two robotic devices were developed to study the propulsive performance of both fullyactuated and under-actuated ribbon n propulsion and investigate the maneuver control of a free-swimming underwater robot propelled by an undulatory n. For the rst research aim, we study the e ect of exible rays and di erent n morphology on the propulsive performance of ribbon- n propulsion. A physical model composed of fteen rays interconnected with an elastic membrane was used to test four di erent ray exural sti ness and four aspect ratios. Our results show that exible rays can improve the propulsive e ciency compared to a rigid counterpart. In addition, the morphology of the ribbon n a ects its propulsive performance as well, and there could exist an optimal n morphology. To understand how an underactuated undulating n can modify its active and passive n motion to e ectively control the hydrodynamic force and propulsive e ciency. We did a series of experiments using the same robotic n model but with some structural modi cations and we measured n kinematics, net surge force and power consumption. We nd that the under-actuated n can keep the equivalent propulsive e ciency as the fully-actuated counterpart within our experimental parameter range. Moreover, our results demonstrate that the thrust force and power consumption of an under-actuated n follow the same scaling laws as the fully-actuated n. To conduct the free-swimming maneuver study, we developed a self-contained, free-swimming robot propelled by an undulatory n, which is able to perform the following maneuvers: forward, reversed swimming and hovering motion. We also performed V3V PIV experiments to capture the ow structures generated by the robotic device. Our results show that the robot can reach higher swimming e ciency at low frequencies. As the number of traveling waves increases, the robot swims more stably in roll, pitch and yaw motions. For cases with varying wave amplitudes, traveling wave with incremental wave amplitude can achieve free-swimming velocity higher than that of decremental wave amplitude. However, the latter case can generate higher pitch angles. For the robot with slightly negative-pitched pectoral ns, it can perform slow diving maneuvers. These ndings demonstrate that we can take advantage of the undulating ribbon n propulsion to achieve high maneuverability for the future underwater vehicles in complex environment. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
6

Feasibility study of jet propulsion for remote operated underwater vehicles /

Gangadharan, Sathya Narayan. January 1986 (has links)
Thesis (M.Eng.) -- Memorial University of Newfoundland. / Typescript. Bibliography: leaves 122-125. Also available online.
7

Analysis of lift and drag forces on the wing of the underwater glider

Meyers, Luyanda Milard January 2018 (has links)
Thesis (Master of Engineering in Mechanical Engineering)--Cape Peninsula University of Technology, 2018. / Underwater glider wings are the lifting surfaces of unmanned underwater vehicles UUVs depending on the chosen aerofoil sections. The efficiency as well as the performance of an underwater glider mostly depends on the hydrodynamic characteristics such as lift, drag, lift to drag ratio, etc of the wings. Among other factors, the geometric properties of the glider wing are also crucial to underwater glider performance. This study presents an opportunity for the numerical investigation to improve the hydrodynamic performance by incorporating curvature at the trailing edge of a wing as oppose to the standard straight or sharp trailing edge. A CAD model with straight leading edge and trailing edge was prepared with NACA 0016 using SolidWorks 2017. The operating conditions were setup such that the inlet speed varies from 0.1 to 0.5 m/s representing a Reynolds number 27.8 x 10ᵌ and 53 x 10ᵌ. The static pressure at different angles of attack (AOA) which varies from 2 to 16degrees at the increment of 2degrees for three turbulent models (K-Ԑ-standard, K-Ԑ-RNG and K-Ԑ-Realizable), was computed for upper and lower surfaces of the modified wing model using ANSYS Fluent 18.1. Thereafter the static pressure distribution, lift coefficient, drag coefficient, lift to drag ratio and pressure coefficient for both upper and lower surfaces were analysed. The findings showed that the lift and drag coefficient are influenced by the AOA and the inlet speed. If these parameters change the performance of the underwater glider changes as depicted by figure 5.6 and figure 5.7. The hydrodynamics of the underwater glider wing is optimized using the Cʟ/Cᴅ ratio as function of the operating conditions (AOA and the inlet speed). The investigation showed that the optimal design point of the AOA of 12 degrees and a corresponding inlet speed of 0.26m/s. The critical AOA matched with the optimal design point AOA of 12 degrees. It was also observed that Cp varies across the wing span. The results showed the Cp is higher closer to the fuselage while decreasing towards the mid-span and at the tip of the wing. This showed that the wing experiences more stress close to the fuselage than the rest of the wing span which implies that a higher structural rigidity is required close to the fuselage. The results of the drag and lift curves correspond to the wing characteristics typical observed for this type of aerofoil.
8

Modelling And Analysis Of Fish Inspired Ionic Polymer Metal Composite Flapping Fins

Karthigan, G 05 1900 (has links) (PDF)
Ionic polymer metal composites (IPMC) are a new class of smart materials that have attractive characteristics such as muscle like softness, low voltage and power consumption, and good performance in aqueous environments. Therefore, there is a significant motivation for research on design and development of IPMC based biomimetic propulsion systems for underwater vehicles. In aerospace, underwater vehicles finds application for forensic studies of spaceship wrecks, missile fragments and any airplane accidents in sea and ocean terrains. Such vehicles can also survey moons and planets that house water oceans. Among biomimetic swimming systems, fish inspired swimming has gained interest since fish like swimming provides high maneuverability, high cruising speed, noiseless propulsion and efficient stabilization compared to conventional propulsion systems. In this work, the paired pectoral fin based oscillatory propulsion using IPMC for aquatic propulsor applications is studied. Dynamic characteristics of IPMC fin are analyzed using numerical simulations and optimization is used to improve the fin design. A complex hydrodynamic function is used to describe the behavior of an active IPMC fin actuator in water. The structural model of the IPMC fin is obtained by modifying the classical dynamic equation for a slender beam to account for the electromechanical dynamics of the IPMC beam in water. A quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to estimate the hydrodynamic performance of the flapping fin. It is shown that the use of optimization methods can lead to significant improvement in performance of the IPMC fin. Further, three fish species with high performance flapping pectoral fin locomotion are chosen and performance analysis of each fin design is conducted to discover the better configurations for engineering applications. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus and Sthethojulis trilineata, are also analyzed. Finally, a comparative study is performed to analyze the performance of the three different biomimetic IPMC flapping pectoral fins.

Page generated in 0.0857 seconds