• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative Decoding and Sparse Channel Estimation for an Underwater Acoustic Telemetry Modem

Iltis, Ronald A. 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / An acoustic modem employing direct-sequence spread-spectrum (DSSS) signaling is considered with LDPC coding. The underwater acoustic channel is tracked using a Kalman filter which requires accurate data decisions. To improve KF performance and reduce the overall error rate, joint iterative LDPC decoding and channel estimation is proposed based on a factor graph and sum-product algorithm approximation. In this scheme, the decoder posterior log likelihood ratios (LLRs) provide data decisions for the KF. Decoder extrinsic LLRs are similarly incorporated into the detector LLRs to yield improved priors for decoding. Error rate simulations of the overall modem are provided for a shallow-water channel model with Ricean/Rayleigh fading.
2

Communication-Aware, Scalable Gaussian Processes for Decentralized Exploration

Kontoudis, Georgios Pantelis 25 January 2022 (has links)
In this dissertation, we propose decentralized and scalable algorithms for Gaussian process (GP) training and prediction in multi-agent systems. The first challenge is to compute a spatial field that represents underwater acoustic communication performance from a set of measurements. We compare kriging to cokriging with vehicle range as a secondary variable using a simple approximate linear-log model of the communication performance. Next, we propose a model-based learning methodology for the prediction of underwater acoustic performance using a realistic propagation model. The methodology consists of two steps: i) estimation of the covariance matrix by evaluating candidate functions with estimated parameters; and ii) prediction of communication performance. Covariance estimation is addressed with a multi-stage iterative training method that produces unbiased and robust results with nested models. The efficiency of the framework is validated with simulations and experimental data from field trials. The second challenge is to perform predictions at unvisited locations with a team of agents and limited inter-agent information exchange. To decentralize the implementation of GP training, we employ the alternating direction method of multipliers (ADMM). A closed-form solution of the decentralized proximal ADMM is provided for the case of GP hyper-parameter training with maximum likelihood estimation. Multiple aggregation techniques for GP prediction are decentralized with the use of iterative and consensus methods. In addition, we propose a covariance-based nearest neighbor selection strategy that enables a subset of agents to perform predictions. Empirical evaluations illustrate the efficiency of the proposed methods / Doctor of Philosophy / In this dissertation, we propose decentralized and scalable algorithms for collaborative multiagent learning. Mobile robots, such as autonomous underwater vehicles (AUVs), can use predictions of communication performance to anticipate where they are likely to be connected to the communication network. The first challenge is to predict the acoustic communication performance of AUVs from a set of measurements. We compare two methodologies using a simple model of communication performance. Next, we propose a model-based learning methodology for the prediction of underwater acoustic performance using a realistic model. The methodology first estimates the covariance matrix and then predicts the communication performance. The efficiency of the framework is validated with simulations and experimental data from field trials. The second challenge regards the efficient execution of Gaussian processes using multiple agents and communicating as little as possible. We propose decentralized algorithms that facilitate local computations at the expense of inter-agent communications. Moreover, we propose a nearest neighbor selection strategy that enables a subset of agents to participate in the prediction. Illustrative examples with real world data are provided to validate the efficiency of the algorithms.
3

Space-time-frequency methods for interference-limited communication systems

Nieman, Karl Frazier 20 January 2015 (has links)
Traditionally, noise in communication systems has been modeled as an additive, white Gaussian noise process with independent, identically distributed samples. Although this model accurately reflects thermal noise present in communication system electronics, it fails to capture the statistics of interference and other sources of noise, e.g. in unlicensed communication bands. Modern communication system designers must take into account interference and non-Gaussian noise to maximize efficiencies and capacities of current and future communication networks. In this work, I develop new multi-dimensional signal processing methods to improve performance of communication systems in three applications areas: (i) underwater acoustic, (ii) powerline, and (iii) multi-antenna cellular. In underwater acoustic communications, I address impairments caused by strong, time-varying and Doppler-spread reverberations (self-interference) using adaptive space-time signal processing methods. I apply these methods to array receivers with a large number of elements. In powerline communications, I address impairments caused by non-Gaussian noise arising from devices sharing the powerline. I develop and apply a cyclic adaptive modulation and coding scheme and a factor-graph-based impulsive noise mitigation method to improve signal quality and boost link throughput and robustness. In cellular communications, I develop a low-latency, high-throughput space-time-frequency processing framework used for large scale (up to 128 antenna) MIMO. This framework is used in the world's first 100-antenna MIMO system and processes up to 492 Gbps raw baseband samples in the uplink and downlink directions. My methods prove that multi-dimensional processing methods can be applied to increase communication system performance without sacrificing real-time requirements. / text
4

Multi-Carrier Communications Over Underwater Acoustic Channels

January 2011 (has links)
abstract: Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results. / Dissertation/Thesis / Ph.D. Electrical Engineering 2011

Page generated in 0.1718 seconds