Spelling suggestions: "subject:"underwater acoustic instruments"" "subject:"underwater acoustic dinstruments""
1 |
The Design of a Deep Ocean HydrophoneHackathorn, Michael F. 01 July 1983 (has links) (PDF)
A design for a deep ocean hydrophone is proposed here. The hydrophone's sound sensing element is comprised of a capped end, piezoelectric cylinder. This sound sensing element is encased in an acoustic coupling fluid filled elastomeric boot. A small diameter tube communicates hydrostatic pressure from the coupling fluid to the interior of the sound sensing element for hydrostatic pressure compensation. The theoretical free field voltage sensitivity, the ratio of open circuit voltage to incident acoustic pressure, is predicted from mathematical model of the sound sensing element.
|
2 |
Optimization of a medium with a large parameter of nonlinearity and its application to the enhancement of a compact, omnidirectional, parametric sourceDufour, Etienne J. 22 May 2006 (has links)
A compact low-frequency projector is of crucial importance especially in underwater acoustics due to the frequency dependence of the absorption.
To improve the efficiency of an omnidirectional acoustic source at low frequencies, parametric amplification may be used by adding a thin layer of nonlinear medium around a spherical transducer.
The parametric effect is based on the interaction of two acoustic waves propagating through a nonlinear medium to produce a difference frequency wave. If both primary frequencies are sufficiently close enough, the result is the creation of a low frequency wave. Investigation is required to find the optimal medium, that is to say, one with a large nonlinear coefficient and a low sound speed. Such a source has already been built using a medium composed of a gel and microsphere mixture. In this case, the nonlinear coefficient is highly pressure dependent reaching a maximum when the microspheres buckle. The need is to optimize the material layer to increase the range of hydrostatic pressures over which the projector is useful.
|
3 |
Quantification of the spatial and temporal evolution of stratified shear instabilities at high Reynolds number using quantitative acoustic scattering techniquesFincke, Jonathan Randall January 2015 (has links)
Thesis: S.M., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 54-56). / The spatial and temporal evolution of stratified shear instabilities is quantified in a highly stratified and energetic estuary. The measurements are made using high-resolution acoustic backscatter from an array composed of six calibrated broadband transducers connected to a six-channel high-frequency (120-600 kHz) broadband acoustic backscatter system. The array was mounted on the bottom of the estuary and looking upward. The spatial and temporal evolution of the waves is described in terms of their wavelength, amplitude and turbulent dissipation as a function of space and time. The observed waves reach an arrested growth stage nearly 10 times faster than laboratory and numerical experiments performed at much lower Reynolds number. High turbulent dissipation rates are observed within the braid regions of the waves, consistent with the rapid transition to arrested growth. Further, it appears that the waves do not undergo periodic doubling and do not collapse once their maximum amplitude is reached. Under some conditions long internal waves may provide the perturbation that decreases the gradient Richardson number so as to initiate shear instability. The initial Richardson number for the observed instabilities is likely between 0.1 and 0.2 based on the slope and growth rate of the shear instabilities. / by Jonathan Randall Fincke. / S.M.
|
4 |
Evaluation of vector sensors for adaptive equalization in underwater acoustic communicationLewis, Matthew Robert, S.M. Massachusetts Institute of Technology January 2014 (has links)
Thesis: S.M., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2014. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 123-125). / Underwater acoustic communication is an extremely complex field that faces many challenges due to the time-varying nature of the ocean environment. Vector sensors are a proven technology that when utilizing their directional sensing capabilities allows us to minimize the effect of interfering noise sources. A traditional pressure sensor array has been the standard for years but suffers at degraded signal to noise ratios (SNR) and requires maneuvers or a lengthly array aperture to direction find. This thesis explores the effect of utilizing a vector sensor array to steer to the direction of signal arrival and the effect it has on equalization of the signal at degraded SNRs. It was demonstrated that utilizing a single vector sensor we were able steer to the direction of arrival and improve the ability of an equalizer to determine the transmitted signal. This improvement was most prominent when the SNR was degraded to levels of 0 and 10 dB where the performance of the vector sensor outperformed that of the pressure sensor in nearly 100% of cases. Finally, this performance improvement occurred with a savings in computational expense. / by Matthew Robert Lewis. / S.M.
|
Page generated in 0.0919 seconds