• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 9
  • 8
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 97
  • 97
  • 97
  • 50
  • 28
  • 26
  • 23
  • 19
  • 17
  • 17
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Is Latent Equine Herpesvirus Type 1 (EHV-1) Reactivated by Triggering Activation of the Unfolded Protein Response in Equine Peripheral Blood Leukocytes?

2013 June 1900 (has links)
Equine Herpesvirus type 1 (EHV-1) is a worldwide threat to the health of horses. It can cause mild respiratory disease, abortions and deaths of newborn foals as well as a potentially fatal neurologic disorder known as Equine Herpesvirus Myeloencephalopathy (EHM). The virus is maintained in populations by stress-induced periodic reactivation of virus in long-term latently infected horses and transmission of the reactivated virus to susceptible individuals. In horses, peripheral blood leukocytes (PBLs) are thought to be an important site for EHV-1 latent genomes. Since the Unfolded Protein Response (UPR) is a cellular response to a variety of stressors that has been linked to reactivation of herpes simplex virus in humans, a virus closely related to EHV-1, I tested the hypothesis that latent EHV-1 relies on the UPR as a pluripotent stress sensor and uses it to reactivate lytic gene expression. Since little work has been done in defining the UPR in horses, I first successfully developed a quantitative real-time polymerase chain reaction (RT-qPCR) assay to detect and quantitate transcripts for selected UPR genes in equine dermal (E.Derm) cells and PBLs. Activation of the UPR was achieved in both cell types using thapsigargin and a difference in gene expression after activation of the UPR in two equine cell types was found. A nested PCR assay to detect and distinguish latent EHV-1 and EHV-4 was evaluated and the sensitivity of the technique to detect EHV-1 was determined. I discovered that the nested PCR technique was not sensitive enough to detect the estimated one latent viral genome in 50,000 PBLs. Lytic EHV-1 infection was characterized by single step growth curve in E.Derm cells and consistent detection of temporal EHV-1 gene expression by RT-qPCR was achieved. The relationship between EHV-1 gene expression and UPR gene expression during lytic infection was investigated. While EHV-1 infection had no effect on UPR gene expression, activation of the UPR appeared to decrease the expression of EHV-1 genes temporarily and reversibly during the first 4 h after infection. Finally, detection of EHV-1 in PBLs from horses presumed to be latently infected by co-cultivation with E. Derm cells permissive to EHV-1 infection was attempted. To detect viral DNA, PBLs were stimulated with thapsigargin or interleukin 2 (IL-2) which was previously reported to induce reactivation of latent EHV-1. I was not able to reproduce previously published experiments of reactivation in vitro of latent EHV-1 by stimulation with IL-2, and virus reactivation did not occur after stimulation of PBLs with thapsigargin. In summary, a RT-qPCR assay to measure the expression of equine UPR genes was developed and activation of the UPR by treatment of E.Derm cells and PBLs with thapsigargin was successfully achieved. A difference in gene expression after activation of the UPR in two equine cell types was found. In contrast to what has been reported for other alphaherpesviruses, there appears to be no, or only little, interaction between the UPR and EHV-1 during viral infection. Detection of latent EHV-1 genomes in PBLs was not achieved by using a nested PCR, as this technique was not sensitive enough to detect the estimated one latent viral genome in 50,000 PBLs. Finally, latent EHV-1 was not detected in presumed latently infected PBLs or reactivated by triggering the UPR in equine PBLs.
22

Luman/CREB3 is a novel retrograde regulator of sensory neuron regeneration: mechanism of action

2014 July 1900 (has links)
Luman (CREB3, LZIP) is a basic leucine zipper transcription factor involved in regulation of the unfolded protein response (UPR), dendritic cell maturation, and cell migration. But despite reported expression in primary sensory neurons, little is known about its role in the nervous system. Luman mRNA from rat sensory neurons was amplified and its coding sequence was determined. The rat Luman cDNA contains a full-length open reading frame encoding 387 amino acids, and the recombinant protein generated from this clone activated transcription from UPR elements. Quantitative RT-PCR revealed rat Luman transcripts in a variety of rat tissues with the highest levels in nervous system tissue. In situ hybridization confirmed the findings and demonstrated that the Luman mRNA hybridization signal localizes to neurons and satellite glial cells in dorsal root ganglia (DRG), the cytoplasm of hepatocytes in liver, and the hippocampal pyramidal cell layers in CA1 and CA3 and the granular cell layer of the dentate gyrus. Luman protein localizes with axonal endoplasmic reticulum (ER) components along the axon length within the sciatic nerve and is activated by sciatic nerve injury. Adult sensory axons also contain Luman mRNA which is translated within the axon and transported to the cell body via the importin-mediated retrograde transport system in response to nerve injury. Further, creation of an N-terminal, C-terminal dual fluorescence-tagged Luman adenoviral construct allowed visualization of the cleavage and retrograde translocation of the N-terminal portion of Luman to the nucleus in real time in vivo and in vitro. Neuronal or subcellular axonal knockdown of Luman significantly impaired the intrinsic ability of injury-conditioned, but not naïve, sensory neurons to extend the regeneration-associated elongating form of neurites. Sciatic nerve crush injury also induced activation of the UPR in axotomized DRGs, including genes linked to cholesterol biosynthesis. Knockdown of Luman decreased the activation of UPR and cholesterol biosynthesis, and axotomy-inducted increases in neurite outgrowth, which could be largely rescued with either mild UPR inducer treatment or cholesterol supplementation. Together these findings provide novel insights linking remote injury-associated axonal ER responses to the regenerative growth capacity of adult sensory neurons via axonal activation and synthesis of Luman and reveal a role for the UPR in regulation of axotomy-induced neurite outgrowth that is critically dependent on Luman.
23

PLANT RESPONSES TO ABIOTIC STRESSES: TWO MOLECULAR APPROACHES IN ARABIDOPSIS AND MAIZE

Humbert, Sabrina 25 August 2011 (has links)
Abiotic stress is highly detrimental to crop productivity worldwide. Research is key to meeting the challenges of modern agriculture in a sustainable and positive fashion. This thesis contributes to our understanding of plant stress responses by examining two molecular aspects of abiotic stress. The first part of the work focused on the Unfolded Protein Response (UPR), a general stress response mechanism triggered by the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. The study was conducted with the model plant Arabidopsis and shed new light on key players in the pathway. An unconventional alternative splicing mechanism, similar to the one identified in other higher eukaryotes, was found to parallel the activation of an ER-resident chaperone. The data suggest that this event is important to alleviate cellular stress in response to adverse environmental conditions such as heat. Further understanding of this pathway will help to develop a more complete view of the mechanisms involved in this response. The second part of the work investigated the interaction between nitrogen limitation and drought at the transcriptional level. A genome-wide transcript profiling experiment was performed to provide a comprehensive view of the response to nitrogen and water limitation in corn. The main finding was the demonstration of a clear synergistic effect between both stresses, an effect that was unexpectedly as important as either stress applied alone. This study adds to our current knowledge of abiotic stress response in plants and should provide the groundwork necessary to build future strategies for crop enhancement.
24

Investigating the Role of ATF6Beta in the ER Stress Response of Pancreatic Beta-cells

Odisho, Tanya 09 December 2013 (has links)
Endoplasmic reticulum (ER) stress has been implicated as a causative factor in the development of pancreatic beta-cell dysfunction and death resulting in type 2 diabetes. This thesis examined the role of ATF6beta in the ER stress response of beta-cells. Using an ATF6beta-specific antibody, expression of full-length ATF6beta was detected in various insulinoma cell lines and rodent islets and the induction of the active form (ATF6beta-p60) under ER stress conditions. Knock-down of ATF6beta in INS-1 832/13 cells did not affect mRNA induction of known ER stress response genes in response to tunicamycin-induced ER stress, however it increased the susceptibility of beta-cells to apoptosis. Conversely, overexpression of ATF6beta-p60 reduced the apoptotic phenotype. Microarray results suggest ATF6beta functions to induce expression of adaptive genes also regulated by ATF6alpha, but also several specific targets genes. These findings have increased our understanding of the role of ATF6beta in the ER stress response of beta-cells.
25

Investigating the Role of ATF6Beta in the ER Stress Response of Pancreatic Beta-cells

Odisho, Tanya 09 December 2013 (has links)
Endoplasmic reticulum (ER) stress has been implicated as a causative factor in the development of pancreatic beta-cell dysfunction and death resulting in type 2 diabetes. This thesis examined the role of ATF6beta in the ER stress response of beta-cells. Using an ATF6beta-specific antibody, expression of full-length ATF6beta was detected in various insulinoma cell lines and rodent islets and the induction of the active form (ATF6beta-p60) under ER stress conditions. Knock-down of ATF6beta in INS-1 832/13 cells did not affect mRNA induction of known ER stress response genes in response to tunicamycin-induced ER stress, however it increased the susceptibility of beta-cells to apoptosis. Conversely, overexpression of ATF6beta-p60 reduced the apoptotic phenotype. Microarray results suggest ATF6beta functions to induce expression of adaptive genes also regulated by ATF6alpha, but also several specific targets genes. These findings have increased our understanding of the role of ATF6beta in the ER stress response of beta-cells.
26

Post-transcriptional Regulation of Membrane-associated RNAs

Jagannathan, Sujatha January 2013 (has links)
<p>RNA localization provides the blueprint for compartmentalized protein synthesis in eukaryotic cells. Current paradigms indicate that RNAs encoding secretory and membrane proteins are recruited to the endoplasmic reticulum (ER), via positive selection of a `signal peptide' tag encoded in the protein. Thus RNA sorting to the ER follows protein sorting and the RNA is considered a passive player. However, RNAs have been shown to access the ER independent of the signal peptide and display a wide range of affinities to the ER that does not correlate with signal peptide strength. How and why mRNAs localize to the ER to varying extents and whether such localization serves a purpose besides protein sorting is poorly understood. To establish the cause and consequence of RNA binding to the ER membrane, I pose three primary questions: 1. How are mRNAs targeted to the ER? 2. Once targeted, how are mRNAs anchored to the ER membrane? 3. Are ER localized mRNAs subject to transcript-specific regulation? </p><p>I address cytosolic mRNA targeting to the ER by comparing the partitioning profiles of cytosolic/nuclear protein-encoding mRNA population (mRNACyto) to that of mRNAs encoding a signal peptide (mRNAER). I show that, at a population level, mRNACyto display a mean ER enrichment that is proportional to the amount of ER-bound ribosomes. Thus, I propose that targeting of mRNACyto to the ER is stochastic and over time, the specific interactions engaged by an individual mRNACyto with the ER determines its steady state partitioning profile between the cytoplasm and the ER. </p><p>To address the modes of direct binding of mRNA to the ER, I examined the association of various RNA populations with the ER after disrupting membrane-bound ribosome's interaction with its ER receptor. mRNACyto and most of mRNAs encoding secretory proteins (mRNACargo) are released upon disruption of ribosome-receptor interactions, indicating no direct mRNA-ER interactions. However, the population of mRNAs that encode resident proteins of the endomembrane organelles such as the ER, lysosome, endosome and the Golgi apparatus (mRNARes) maintain their association with the ER despite the disruption of ribosome-receptor interactions. These results indicate direct binding of mRNARes to the ER, further suggesting that the function of the encoded proteins dictates the mode of association of corresponding mRNA with the ER. </p><p>To uncover the mode of mRNARes binding directly to ER, I performed differential proteomic analysis of cytosolic and membrane bound RNA-protein complexes, which revealed a network of RNA binding proteins that interact uniquely with the ER-anchored mRNAs. The anchoring of endomembrane resident protein-encoding RNAs to the ER through these RNA binding proteins may reflect an imprinting of the ER with the information necessary for the continued biogenesis of the endomembrane organelle system even in situations where translation-dependent ER targeting of an mRNA is compromised. </p><p>Finally, I address whether ER-bound mRNAs can be regulated differentially by comparing the fates of two signal peptide-encoding RNAs, B2M and GRP94, during the unfolded protein response (UPR). I show that in response to ER stress, GRP94 mRNA, but not B2M, relocates to stress-induced RNA granules, thus escaping an RNA decay program that operates at the ER membrane during the UPR. Hence, I propose that the mode of RNA association to the ER is subject to regulation and influences the fate of RNAs during cellular stress. Thus, by demonstrating diverse modes of mRNA localization to the ER and differential regulation of ER bound mRNAs during cellular stress, my work has helped establish an emerging role for the ER as a post-transcriptional gene regulatory platform.</p> / Dissertation
27

Regulation of mammalian IRE1α : co-chaperones and their importance

Amin-Wetzel, Niko January 2018 (has links)
When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER protein folding capacity to restore protein folding homeostasis. Unfolded proteins activate UPR signalling across the ER membrane to the nucleus by promoting oligomerisation of IRE1, a conserved transmembrane ER stress receptor. Despite significant research, the mechanism of coupling ER stress to IRE1 oligomerisation and activation has remained contested. There are two proposed mechanisms by which IRE1 may sense accumulating unfolded proteins. In the direct binding mechanism, unfolded proteins are able to bind directly to IRE1 to drive its oligomerisation. In the chaperone inhibition mechanism, unfolded proteins compete for the repressive BiP bound to IRE1 leaving IRE1 free to oligomerise. Currently, these two mechanisms respectively lack compelling in vivo and in vitro evidence required to assess their validity. The work presented here first describes in vivo experiments that identify a role of the ER co-chaperone ERdj4 as an IRE1 repressor that promotes a complex between the luminal Hsp70 BiP and the luminal stress-sensing domain of IRE1α (IRE1LD). This is then built on by a series of in vitro experiments showing that ERdj4 catalyses formation of a repressive BiP-IRE1LD complex and that this complex can be disrupted by the presence of competing unfolded protein substrates to restore IRE1LD to its default, dimeric, and active state. The identification of ERdj4 and the in vitro reconstitution of chaperone inhibition establish BiP and its J-domain co-chaperones as key regulators of the UPR. This thesis also utilises the power of Cas9-CRISPR technology to introduce specific mutations into the endogenous IRE1α locus and to screen for derepressing IRE1α mutations. Via this methodology, two predicted unstructured regions of IRE1 are found to be important for IRE1 repression. Finally, this thesis challenges recent in vitro findings concerning the direct binding mechanism.
28

Estudo da variação circadiana da UPR no hipotálamo e suas implicações na ingestão alimentar / A study about the circadian variation of UPR at the hypothalamus and its consequences in food intake

Mesquita, Caroline Costa, 1986- 27 August 2018 (has links)
Orientador: Gabriel Forato Anhê / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-27T14:26:05Z (GMT). No. of bitstreams: 1 Mesquita_CarolineCosta_D.pdf: 2692158 bytes, checksum: 5f07d43267a2e976f9b9818ec63ba452 (MD5) Previous issue date: 2015 / Resumo: Os ritmos circadianos de ingestão alimentar se estabelecem com objetivo de manter a homeostasia de nutrientes no meio celular, frente a variações intrínsecas ao ciclo claro/escuro. Neste sentido, a gliconeogênese de roedores é suprimida no período noturno, no qual há ocorrência de um surto alimentar bifásico que compreende aproximadamente 90% de todo o aporte calórico diário. Estes eventos apresentam, entre si, uma relação causal, onde o próprio aumento dos nutrientes circulantes, principalmente a glicose, controla a gliconeogênese. O padrão inverso é observado na fase clara do ciclo claro/escuro. Recentes estudos têm demonstrado que, a ativação farmacológica de vias da Unfolded Protein Response (UPR), no sistema nervoso central, resulta em resistência à ação anorexigênica da insulina e, consequentemente, aumento da ingestão alimentar através de um mecanismo não completamente esclarecido. A UPR é uma resposta celular adaptativa que atenua a taxa de tradução de mRNAs, aumenta a proteólise e, deste modo, recupera o fenótipo celular. Esta reposta, quando ativada cronicamente, pode resultar em morte celular programada e resistência à insulina. No entanto, ainda não estava claro se a via do ATF6 da UPR tem, de fato, uma relação com o ritmo alimentar. Para responder a esse questionamento, realizamos análises da variação circadiana das proteínas envolvidas na via da UPR, imunoprecipitações com animais adrenalectomizados, e aplicação de dexametasona subcutânea. Os resultados demonstram que o ATF6 teve um aumento noturno atingindo o máximo de transição da fase clara para fase escura. A partir desse fato, foram realizados ensaios de imunuprecipitações em ratos adrenalectomizados para evidenciar as associações dos complexos CRTC2/ATF6 e CRTC2/CREB1. Contudo, nossos dados suportam a hipótese que os níveis fisiológicos de glicocorticóides podem reprimir a expressão CRH e estimular a ingestão de alimentos, através de uma via dependente de ATF6. Estes eventos, por consequência, poderão reduzir a atividade transcricional do CREB1, sobre o CRH, corroborando com os dados da literatura que apontam que os glicocorticóides endógenos dos roedores (principalmente a corticosterona) exercem um conhecido papel no controle da ingestão alimentar, decorrente principalmente da modulação da expressão do neurotransmissor anorexigênico CRH / Abstract: The circadian cycles of food intake have an important role in the homeostasis of cellular environment, acting over intrinsic changes to the sleep/wake cycle. Therefore, mice gluconeogenesis is suppressed at night where a food outbreak, responsible by 90% of all daily caloric ingestion, occurs. These events are connected by a causal relation, where the current nutrient increasing, mostly glucose, controls gluconeogenesis. The oppose pattern is verified during the light stage of the sleep/wake cycle. Recent studies have indicated that pharmacological activation of Unfolded Protein Response (UPR) pathways, at central nervous system, implies in resistance to the anorectic insulin effect, and, consequently, increase of the food intake activity trough a not fully explained engine. UPR is an adaptive cellular response that reduces mRNA¿s transcriptional rate, increases proteolysis, and therefore, restores cellular phenotype. This response, when constantly enabled, may induce cellular death and insulin resistance. However, it was not clear yet if the UPR¿s ATF6 pathway has, indeed, a connection with the feed rhythm. To answer to this question, we did several analysis of the circadian variation of the proteins connected to the UPR¿s pathway, adrenalectomized animals immunopreciptations and subcutaneous dexamethasone applications. The results demonstrated that ATF6 has a nightly increase and has reached the maximum of transcription rate from the light to the dark cycle. From this point, it was made immunopreciptations tests in adrenalectomized mice to evidence the association between CRTC2/ATF6 and CRTC2/CREB1 complexes. However, our data support the hypothesis that the physiological levels of glucocorticoids may suppress CHR expression and stimulate food intake trough an ATF6 dependent pathway. Those events, therefore, may reduce CREB1¿s transcriptional activity, confirming other studies data that indicates that endogenous mice glucocorticoids (mainly corticosterone) play an well-known role in food intake control, mainly due from modulation of the expression of the anorectic neurotransmitter CRH / Doutorado / Farmacologia / Doutora em Farmacologia
29

The Mechanisms and Consequences of Gene Suppression During the Unfolded Protein Response

Arensdorf, Angela Marie 01 July 2013 (has links)
The endoplasmic reticulum (ER) facilitates the synthesis, assembly and quality control of all secretory, transmembrane, and resident proteins of the endomembrane system. An accumulation of unfolded proteins or a disruption in the specialized folding environment within the organelle causes ER stress, thus impairing the folding capacity of the ER. In response to this stress, the ER initiates a signaling cascade called the unfolded protein response (UPR) in an attempt to restore ER homeostasis. The vertebrate UPR is propagated by three ER-resident transmembrane proteins (i.e., PERK, IRE1α, and ATF6α), each initiating a signaling cascade that ultimately culminates in production of a transcriptional activator. The UPR was originally characterized as a pathway for the upregulation of ER chaperones, and a comprehensive body of subsequent work has shown that protein synthesis, folding, oxidation, trafficking, and degradation are all transcriptionally enhanced by the UPR. However, UPR activation is also accompanied by extensive mRNA suppression. The mechanisms responsible for this suppression and its consequences for physiological processes beyond the realm of ER protein folding and processing are only now beginning to be described. The overall goal of my thesis work was to explore this process of UPR-mediated gene suppression by identifying the mechanisms involved and the cellular processes affected. As a result, I characterized a novel mechanism of UPR-mediated transcriptional repression involving the translational regulation of the transcription factor C/EBPβ resulting in the suppression of the gene Il4ra, encoding an essential subunit of the IL-4/IL-13 receptor. As a consequence of this suppression, a novel effect of ER stress was identified in the impairment of IL-4/IL-13 signaling, a finding of potential significance in the study of inflammatory disease. In addition to this mechanism, I validated a novel approach to the identification of UPR-regulated transcription factors using publically available bioinformatic software. Through this analysis, I identified the transcription factor HNF4α as a novel post-translational UPR-regulated transcription factor, the regulation of which, resulted in the suppression of a number of lipid metabolic genes. This analysis not only identified a novel UPR-regulated transcription factor, but also presented a new tool for the characterization of UPR-mediated gene suppression. My work represents an independent and original investigation into the process of UPR-mediated gene suppression; and reveals that the UPR facilitates transcriptional suppression through the transcriptional, translational, and post-translational regulation of multiple transcription factors, resulting in the coordinated attenuation of physiological pathways. This function of the UPR is likely to contribute to metabolic, inflammatory, and other chronic disease states.
30

Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation / ミツグミン56は小胞体タンパク質であり、生後筋成熟に必須である

Bo, Fan(Van) 24 November 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(薬科学) / 甲第20059号 / 薬科博第66号 / 新制||薬科||8(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 竹島 浩, 教授 中山 和久, 教授 根岸 学 / 学位規則第4条第1項該当 / Doctor of Pharmaceutical Sciences / Kyoto University / DFAM

Page generated in 0.0796 seconds