Spelling suggestions: "subject:"iniform epaces"" "subject:"iniform espaces""
1 |
Über uniforme RäumeUcsnay, Peter. January 1971 (has links)
Habilitationsschrift--Bonn. / Bibliography: p. 81.
|
2 |
Über uniforme RäumeUcsnay, Peter. January 1971 (has links)
Habilitationsschrift--Bonn. / Bibliography: p. 81.
|
3 |
Complete regularity and related concepts in L-uniform spacesHarnett, Rait Sicklen January 1992 (has links)
L will denote a completely distributive lattice with an order reversing involution. The concept of an L-uniform space is introduced. An extension theorem concerning L-uniformly continuous functions is proved. A characterisation of L-uniformizability, involving L-complete regularity is given. With respect to L--completely regular spaces it is shown that the topological modification of an L-completely regular space is completely regular. Furthermore it is shown that the topologically generated L-topology of a completely regular space is L-completely regular.
|
4 |
Generalisations of filters and uniform spacesMuraleetharan, Murugiah January 1997 (has links)
The notion of a filter F ∈ 2²x has been extended to that of a : prefilter: ƒ ∈ 1²x, generalised filter ƒ ∈ 2²x x and fuzzy filter ᵩ ∈ 1¹x. A uniformity is a filter with some other conditions and the notion of a uniformity D ∈ 2²xxx has been extended to that of a : fuzzy uniformity d ∈ 1²xxx , generalised uniformity ∈ 1²xxx and super uniformity b ∈ 1¹x. We establish categorical embeddings from the category of uniform spaces into the categories of fuzzy uniform spaces, generalised uniform spaces and super uniform spaces and also categorical embeddings into the category of super uniform spaces from the categories of fuzzy uniform spaces and generalised uniform spaces.
|
5 |
Topics in semi-uniform spaces /St. Andre, Richard January 1971 (has links)
No description available.
|
6 |
Topics in semi-uniform spaces /St. Andre, Richard January 1971 (has links)
No description available.
|
7 |
Ομοιόμορφοι χώροιΑρετάκης, Δημήτριος 27 August 2008 (has links)
Στο Κεφάλαιο 1 δίνουμε τις έννοιες της ομοιομορφίας και του ομοιόμορφου χώρου. Προσδιορίζεται η σχέση ομοιόμορφων και
τοπολογικών χώρων. Αποδεικνύεται ότι ο μονοσήμαντα ορισμένος τοπολογικός χώρος που προσδιορίζει ένας ομοιόμορφος χώρος είναι
Tychonoff και ότι κάθε χώρος Tychonoff προσδιορίζεται (όχι μονοσήμαντα) από έναν ομοιόμορφο χώρο. Μελετώνται ιδιότητες
των ομοιόμορφων χώρων και παραθέτονται παραδείγματα αυτών.
Στο Κεφάλαιο 2 ορίζονται και μελετώνται οι ομοιομόρφως συνεχείς απεικονίσεις και διάφορες ιδιότητες των ομοιόμορφων χώρων.
Στο κεφάλαιο 3 ορίζονται και μελετώνται ολικά φραγμένοι, πλήρεις και συμπαγείς ομοιόμορφοι χώροι.
Στο Κεφάλαιο 4 δίνονται εφαρμογές των ομοιόμορφων χώρων σε χώρους συναρτήσεων. / -
|
8 |
Lattice-valued uniform convergence spaces : the case of enriched lattices /Craig, Andrew Philip Knott. January 2007 (has links)
Thesis (M.Sc. (Mathematics)) - Rhodes University, 2008.
|
9 |
Tangential limits of inner functions and functions orthogonal to invariant subspacesProtas, David Sydney, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
10 |
Lattice-valued uniform convergence spaces the case of enriched latticesCraig, Andrew Philip Knott January 2008 (has links)
Using a pseudo-bisymmetric enriched cl-premonoid as the underlying lattice, we examine different categories of lattice-valued spaces. Lattice-valued topological spaces, uniform spaces and limit spaces are described, and we produce a new definition of stratified lattice-valued uniform convergence spaces in this generalised lattice context. We show that the category of stratified L-uniform convergence spaces is topological, and that the forgetful functor preserves initial constructions for the underlying stratified L-limit space. For the case of L a complete Heyting algebra, it is shown that the category of stratified L-uniform convergence spaces is cartesian closed.
|
Page generated in 0.0508 seconds