Spelling suggestions: "subject:"iniversal cycle"" "subject:"iniversal eycle""
1 |
Graph Universal Cycles of Combinatorial ObjectsCantwell, Amelia, Geraci, Juliann, Godbole, Anant, Padilla, Cristobal 01 June 2021 (has links)
A connected digraph in which the in-degree of any vertex equals its out-degree is Eulerian; this baseline result is used as the basis of existence proofs for universal cycles (also known as ucycles or generalized deBruijn cycles or U-cycles) of several combinatorial objects. The existence of ucycles is often dependent on the specific representation that we use for the combinatorial objects. For example, should we represent the subset {2,5} of {1,2,3,4,5} as “25” in a linear string? Is the representation “52” acceptable? Or is it tactically advantageous (and acceptable) to go with {0,1,0,0,1}? In this paper, we represent combinatorial objects as graphs, as in [3], and exhibit the flexibility and power of this representation to produce graph universal cycles, or Gucycles, for k-subsets of an n-set; permutations (and classes of permutations) of [n]={1,2,…,n}, and partitions of an n-set, thus revisiting the classes first studied in [5]. Under this graphical scheme, we will represent {2,5} as the subgraph A of C5 with edge set consisting of {2,3} and {5,1}, namely the “second” and “fifth” edges in C5. Permutations are represented via their permutation graphs, and set partitions through disjoint unions of complete graphs.
|
2 |
On Universal Cycles for New Classes of Combinatorial StructuresBlanca, Antonio, Godbole, Anant P. 01 December 2011 (has links)
A universal cycle (u-cycle) is a compact listing of a collection of combinatorial objects. In this paper, we use natural encodings of these objects to show the existence of u-cycles for collections of subsets, restricted multisets, and lattice paths. For subsets, we show that a u-cycle exists for the κ-subsets of an n-set if we let κ vary in a non zero length interval. We use this result to construct a "covering" of length (1+o(1))(n/κ) for all subsets of [n] of size exactly κ with a specific formula for the o(1) term. We also show that u-cycles exist for all n-length words over some alphabet ∑, which contain all characters from R ⊂ ∑. Using this result we provide u-cycles for encodings of Sperner families of size 2 and proper chains of subsets.
|
3 |
Universal Cycles of Classes of Restricted WordsLeitner, Arielle, Godbole, Anant P. 06 December 2010 (has links)
It is well known that Universal cycles (U-cycles) of k-letter words on an n-letter alphabet exist for all k and n. In this paper, we prove that Universal cycles exist for several restricted classes of words, including non-bijections, "equitable" words (under suitable restrictions), ranked permutations, and "passwords". In each case, proving the connectedness of the underlying de Bruijn digraph is a non-trivial step.
|
4 |
Universal Cycles for Some Combinatorial ObjectsCampbell, Andre A 01 May 2013 (has links) (PDF)
A de Bruijn cycle commonly referred to as a universal cycle (u-cycle), is a complete and compact listing of a collection of combinatorial objects. In this paper, we show the power of de Bruijn's original theorem, namely that the cycles bearing his name exist for n-letter words on a k-letter alphabet for all values of k,n, to prove that we can create de Bruijn cycles for multi-sets using natural encodings and M-Lipschitz n-letter words and the assignment of elements of [n]={1,2,...,n} to the sets in any labeled subposet of the Boolean lattice; de Bruijn's theorem corresponds to the case when the subposet in question consists of a single ground element. In this paper, we also show that de Bruijn's cycles exist for words with weight between s and t, where these parameters are suitably restricted.
|
Page generated in 0.0531 seconds