Spelling suggestions: "subject:"unmanned"" "subject:"anmanned""
61 |
Development Of A Proof-Of-Concept Backpackable Unmanned Aerial VehicleWalker, Calvin Russell 05 August 2006 (has links)
This thesis documents the design and development of a robust backpackable proof-of-concept unmanned aerial vehicle. The unmanned aerial vehicle?s design departs from existing configurations in utilizing a keel beam fuselage which replaces the enclosed fuselage by a flat keel beam on which the sensors, the autopilot, their related power sources, and flight control systems are mounted. The keel beam fuselage is provides enhanced mounting capability for multiple sensors and quick reconfiguration in the field. The keel beam fuselage can also be manufactured quicker than a traditional enclosed fuselage. The objective of this study is to demonstrate that the keel beam configuration is a viable design for an unmanned aerial vehicle and the challenges of modular, plug-n-play hardware. The design, fabrication, and flight testing of the air vehicle are addressed.
|
62 |
Multifunctional Piezoelectric Energy Harvesting ConceptsAnton, Steven Robert 02 May 2011 (has links)
Energy harvesting technology has the ability to create autonomous, self-powered electronic systems that do not rely on battery power for their operation. The term energy harvesting describes the process of converting ambient energy surrounding a system into useful electrical energy through the use of a specific material or transducer. A widely studied form of energy harvesting involves the conversion of mechanical vibration energy into electrical energy using piezoelectric materials, which exhibit electromechanical coupling between the electrical and mechanical domains. Typical piezoelectric energy harvesting systems are designed as add-on systems to a host structure located in a vibration rich environment. The added mass and volume of conventional vibration energy harvesting designs can hinder to the operation of the host system. The work presented in this dissertation focuses on advancing piezoelectric energy harvesting concepts through the introduction of multifunctionality in order to alleviate some of the challenges associated with conventional piezoelectric harvesting designs.
The concept of multifunctional piezoelectric self-charging structures is explored throughout this work. The operational principle behind the concept is first described in which piezoelectric layers are directly bonded to thin-film battery layers resulting in a single device capable of simultaneously harvesting and storing electrical energy when excited mechanically. Additionally, it is proposed that self-charging structures be embedded into host structures such that they support structural load during operation. An electromechanical assumed modes model used to predict the coupled electrical and mechanical response of a cantilever self-charging structure subjected to harmonic base excitation is described. Experimental evaluation of a prototype self-charging structure is then performed in order to validate the electromechanical model and to confirm the ability of the device to operate in a self-charging manner. Detailed strength testing is also performed on the prototype device in order to assess its strength properties. Static three-point bend testing as well as dynamic harmonic base excitation testing is performed such that the static bending strength and dynamic strength under vibration excitation is assessed. Three-point bend testing is also performed on a variety of common piezoelectric materials and results of the testing provide a basis for the design of self-charging structures for various applications.
Multifunctional vibration energy harvesting in unmanned aerial vehicles (UAVs) is also investigated as a case study in this dissertation. A flight endurance model recently developed in the literature is applied to model the effects of adding piezoelectric energy harvesting to an electric UAV. A remote control foam glider aircraft is chosen as the test platform for this work and the formulation is used to predict the effects of integrating self-charging structures into the wing spar of the aircraft. An electromechanical model based on the assumed modes method is then developed to predict the electrical and mechanical behavior of a UAV wing spar with embedded piezoelectric and thin-film battery layers. Experimental testing is performed on a representative aluminum wing spar with embedded self-charging structures in order to validate the electromechanical model. Finally, fabrication of a realistic fiberglass wing spar with integrated piezoelectric and thin-film battery layers is described. Experimental testing is performed in the laboratory to evaluate the energy harvesting ability of the spar and to confirm its self-charging operation. Flight testing is also performed where the fiberglass spar is used in the remote control aircraft test platform and the energy harvesting performance of the device is measured during flight. / Ph. D.
|
63 |
Collaborative Tarrget Localization and Inspection Using a Heterogeneous Team of Autonomous VehiclesVan Covern, David Burns 17 December 2007 (has links)
Autonomous vehicle development is a rapidly growing field that has vast possibilities for both military and commercial applications. Removing people from dangerous tasks will save lives. Continued research is necessary in order to build these new technologies and mature those already established. One area of potential in the unmanned vehicle community is that of fully autonomous cooperation. This area of research will allow multiple unmanned platforms to perform new functions on a larger scale by combining their capabilities in a coordinated manner.
This thesis addresses the emerging need of research related to fully autonomous cooperation between a heterogeneous team of vehicles, by taking a system level approach and integrating the necessary technologies. Software was developed and then tested that combines an unmanned ground vehicle and an unmanned aerial vehicle in order to perform a task that utilizes the strengths of each platform. The ground vehicle is programmed with a route for which it sends look-ahead waypoints to the aircraft. As it traverses the route, the aircraft searches for possible targets. If a target is detected, the approximate coordinates are sent over the network and the ground vehicle then further localizes and inspects the target. Once the inspection is completed, the ground vehicle continues on its previous route. This thesis demonstrates that pairing ground and aerial vehicles in a fully autonomous target localization problem can indeed provide a team functioning more efficiently than either alone. / Master of Science
|
64 |
A Conceptual Design and Economic Analysis of a Small Autonomous HarvesterFrench Jr, William David 30 April 2014 (has links)
Current trends in agricultural equipment have led to an increasing degree of autonomy. As the state of the art progresses towards fully autonomous vehicles, it is important to consider assumptions implicit in the design of these vehicles. Current automation in harvesters have led to increased sensing and automation on current combines, but no published research examines the effect of machine size on the viability of the autonomous system. The question this thesis examines is: if a human is no longer required to operate an individual harvester, is it possible to build smaller equipment that is still economically viable?
This thesis examines the appropriateness of automating these machines by developing a conceptual model for smaller, fully autonomous harvesters. This model includes the basic mechanical subsystems, a conceptual software design, and an economic model of the total cost of ownership.
The result of this conceptual design and analysis is a greater understanding of the role of autonomy in harvest. By comparing machine size, machine function, and the costs to own and operate this equipment, design guidelines for future autonomous systems are better understood. It is possible to build an autonomous harvesting system that can compete with current technologies in both harvest speed and overall cost of ownership. / Master of Science
|
65 |
Jellyfish Inspired Underwater Systems and TechnologiesSmith, Colin Frederick 12 January 2012 (has links)
Unmanned underwater vehicles (UUVs) have long been in use but increasingly there has been a wave of biomimetic robots taking over the duties and functions of traditional vehicles. A robotic jellyfish, inspired by the species Aurelia aurita was developed and characterized. In addition to the body of the main robotic vehicle, supporting technologies were developed including polymeric artificial muscles, hydrogel-based artificial mesoglea, and an inclinometer inspired by the jellyfish statocyst organ. Through multiple versions, the vehicle was able to attain an order of magnitude increase in proficiency from 0.022 s?? to 0.21 s?? and robustness not found in initial prototypes. A polyvinyl alcohol hydrogel reinforced with ferritin nanoparticles was found to accurately mimic the stress and strain characteristics of natural Aurelia mesoglea while maintaining a high water content similar to the animal. In addition, the optical properties were shown to be controlled by water to DMSO ratio. A five layer PPy-Au-PVDF-Au-PPy actuator stored in 0.5M KCl solution actuated at 4 VDC potential and produced an impressive 90% tip deflection. In addition, the rate of change was extremely high at 50% deflection of initial actuator length per second. The artificial jellyfish statocyst was found to produce the required highly linear voltage divider output. This sensor will provide the vehicle with biomimetic self-awareness of its own body position. Future directions are proposed for the biomimetic robotic jellyfish such as on-board power and computing, multi-material mesoglea with a dermal layer, a MEMS-based statocyst, and polymeric muscles with increased force production and time response. / Master of Science
|
66 |
Design of a Control System for Multiple Autonomous Ground Vehicles to Achieve a Self Deployable Security PerimeterClemmensen, John Scott Jr. 27 August 2007 (has links)
Due to the limitations of GPS in areas where line of sight to the sky is obstructed the development of a GPS-free algorithm for relative formation control is an asset to collaborative vehicles. This paper presents a novel approach based on the Received Signal Strength Indication (RSSI) measurement between broadcast and receive nodes to calculate distance and using the data transfer capability to allow each vehicle to develop a table of relative positions. These relative positions are used to create a potential field that results in an absolute minimum at the vehicles desired position. All vehicles are numbered sequentially. The numbering defines the order in which they will broadcast their data, as well as their position along the perimeter. This thesis looks at two control methods for achieving a formation. The first is the circular motion method that puts perimeter nodes in an orbit around around the perimeter center. The second is a gradient descent method that calculates the gradient of the potential field. Both methods achieve a formation when all perimeter nodes are at their absolute minimums in the potential field. Tests were conducted to analyze RSSI measurements using the 802.15.4 protocol, and a mathematical simulation was conducted for each control algorithm. / Master of Science
|
67 |
Design of a Micro Wireless Instrumented Payload for Unmanned Vehicle TestingHastings, Benjamin E. 06 October 2006 (has links)
The testing of unmanned vehicles presents a need for an independent device capable of accurately collecting position and orientation data. While commercial-off-the-shelf components could be pieced together to sense and record this information, this is an expensive, large, and heavy solution, not suitable for small or aerial vehicles. The micro wireless instrumented payload, or μWIP, was designed precisely for this purpose.
The μWIP includes a GPS receiver, 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer which are used to measure an unmanned vehicle's position and orientation. The device also uses a secure digital card for data storage, and an 802.11b module to provide wireless connectivity. Additionally, the μWIP contains a on-board battery and the circuitry required to charge it. Firmware for the ARM7 processor was written to allow sensor calibration and data transmission, and a user interface was designed to run on a personal computer.
The finished design is a tiny 3''x5''x1'', and weighs a mere 0.8 pounds including battery and antennas. It is capable of continuously streaming accurate GPS and inertial data over an 802.11b wireless network for over 5 hours. Having a bill of materials cost just over $600, the μWIP is also more cost effective than any alternative solutions.
This thesis details the hardware and software design of the μWIP, as well as the initial testing, calibration, and evaluation of the device. / Master of Science
|
68 |
Development of a Multi-Level Emergency Stop System for Unmanned VehiclesAvitabile, Michael Vincent 30 April 2007 (has links)
As the use of unmanned vehicles continues to grow, so does the need for systems to safely test and operate these vehicles. While there are safety systems designed for this purpose, they are often developed for a specific vehicle platform. The Multi-Level Emergency Stop (MLES) system provides three user-defined emergency response contingencies that can be adapted to a wide variety of unmanned vehicles.
The Multi-Level Emergency Stop system is designed to be an ad-on safety system that can be integrated into ground, air, or surface unmanned vehicles. A complete MLES system consists of a hand held transmitter and a vehicle mounted receiver. The three levels of contingencies are controlled by three switches on the transmitter. These switches engage and disengage contacts located in the receiver via a wireless link. The function of these contacts is determined by the user for each unique application.
Presented in this thesis is the detailed hardware design and software layout of the Multi-Level Emergency Stop system. Also included are the performance results and operational tests. / Master of Science
|
69 |
Mechanical Design of a Sonar Mount for an Unmanned Surface VehiclePearson, Jackson Rand 07 October 2015 (has links)
Trends in USV research will continue on the path toward a fully autonomous USV capable of troop transport or enemy engagement. Imaging sonar will be an integral part of this development. However, due in part to sonar's inherent physical limitations, as well as its sensitivity to environmental factors, sonar technology represents a bottleneck to the development of situationally aware USVs capable of high-speed maneuvers. The work presented in this thesis is intended to provide a platform to bridge this gap, which is the design, analysis, and field testing of a mount for an imaging sonar intended as a retrofit for an existing vessel. The result of this work represents a step toward the ultimate goal of a fully autonomous USV, and will enable the advancement of research in the use of imaging sonar on surface vehicles.
This thesis examines the problem of mounting a sonar on a surface vehicle from a fundamental perspective. It describes the development of a list of customer needs, presents a prototype design, and presents the important analyses for the prototype. The prototype mount was built, and field testing for proof of concept was carried out on the Virginia Tech USV, which is a Rigid Hull Inflatable Boat (RHIB), and the Navy Special Operations Craft - Riverine (SOC-R) on the Pearl River at Stennis Space Center. Testing showed the mount to be highly effective at limiting risk to personnel and equipment while operating in difficult environments like swamps. However, it also exposed some limitations associated with the mount's breakaway device, and the mounting location at the side in 2012, and at the stern in 2013.
Based on experience gained from testing, a new mount design is presented for use at the bow. The bow location offers better impact protection to the sonar as long as the sonar can be positioned above the boat's draft. Field tests also exposed the need for an omnidirectional breakaway device which limits impact loads on the sonar during collisions. The Ball and Socket Breakaway (BSB) device was designed to satisfy this need. The BSB is acts as a "mechanical fuse," which holds the sonar rigidly under normal operating conditions, but will slip and rotate when the sonar strikes an object. It is designed to respond to impact loads on the sonar from the front, sides, or back, resulting in improved sonar protection during the varied maneuvers necessary for operation in shallow, narrow passageways. The expected moment holding capacity of the BSB as it is currently designed is 300 N-m (2650 lb-in), which should allow for speeds up to 3 m/s (6 kt) before drag-induced breakaway. / Master of Science
|
70 |
Sensing Atmospheric Winds from Quadrotor MotionGonzalez-Rocha, Javier 01 June 2020 (has links)
Wind observations that are critical for understanding meteorological processes occurring inside of the Earth's atmospheric boundary layer (ABL) are sparse due to limitations of conventional atmospheric sensors. In this dissertation, dynamic systems and estimation theory are combined with experimental methods to exploit the flight envelope of multirotor UAS for wind sensing. The parameters of three quadrotor motion models, consisting of a kinematic particle, a dynamic particle, and a dynamic rigid body models are developed to measure wind velocity in hovering flight. Wind tunnel and steady level flight tests are used to characterize kinematic and dynamic particle models. System identification stepwise regression and output error algorithms are used to determine the model structure and parameter estimates of rigid body models. The comparison of all three models demonstrates the rigid body model to have higher performance resolving slow-varying winds based on a frequency response analysis and field experiments conducted next to a 3-D sonic anemometer.
The dissertation also presents an extension of the rigid body wind estimation framework to profile the horizontal components of wind velocity in vertical steady ascending flight. The extension employed system identification to characterize five rigid body models for steady-ascending flight speeds increasing from 0 to 2 m/s in intervals of 0.5~m/s. State observers for wind profiling were synthesized using all five rigid body models. Performance assessments employing wind observations from in situ and remote sensors demonstrated model-based wind profiling results to be be in close agreement with ground-truth wind observations.
Finally, the rigid body wind sensing framework developed in this dissertations for multirotor UAS is employed to support science objectives for the Advanced Lagrangian Predictions for Hazards Assessment Project. Quadrotor wind measurements sampled at 10 m above sea level were used to characterize the leeway of a person in water for search and rescue scenarios. Leeway values determined from quadrotor wind measurements were found to be in close to leeway parameters previous published in the literature. This results demonstrates the utility of model-based wind sensing for multirotor UAS for providing wind velocity observations in complex environments where conventional wind observations are not readily available. / Doctor of Philosophy / Wind observations that are critical for understanding meteorological processes occurring inside of the Earth's atmospheric boundary layer (ABL) are sparse due to limitations of conventional atmospheric sensors. In this dissertation, dynamic systems and estimation theory are combined with experimental methods to exploit the flight envelope of multirotor UAS for wind sensing. The parameters of three quadrotor motion models, consisting of a kinematic particle model, a dynamic particle model, and a dynamic rigid body model, are characterized to measure wind velocity in hovering flight. Parameter characterizations are realized using data from wind tunnel, steady level flight tests and system identification experiments. Model-based wind estimations algorithms are developed using the kinematic particle model directly and by synthesizing state observers for the dynamic particle and rigid body models separately. For comparison purposes, the frequency response characteristic of the dynamic particle and rigid body models is examined to determine the range of wind fluctuations that each model can resolve. Performance comparisons demonstrate that the rigid body model to resolve higher wind fluctuations and yield more accurate wind estimates. The dissertation extends the rigid body wind estimation algorithm to estimate wind velocity profiles of the horizontal wind vector. The rigid body wind estimation algorithms is used to answer science questions about about the drift of a person in water.
|
Page generated in 0.0461 seconds