• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 22
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 57
  • 57
  • 57
  • 13
  • 12
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Vortices shed by accelerating flat plates

Matjoi, Morapeli Michael January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, May 2017 / Flow around flat plates that were uniformly accelerated from rest with acceleration of 13g is analysed with overset mesh from Star CCM+ commercial CFD software. The particular interest is more on the vortices shed from the plate edges. Three 8mm thick plates of the same cross-sectional areas (108mm length equilateral triangular, 71mm length square and 80mm diameter circular) were simulated. The validation of the numerical method was achieved by using laser vapor sheet method to visualize the flow profiles of accelerating circular plate and comparing the CFD and experimental results. The CFD and experimental results were consistent with each other. It was found that when a plate accelerated in air, it displaced air particles out of its way. The shear layers of air separated from the front edges of the plate and rolled around a vortex core forming a primary vortex ring in the plate wake. The size of the primary vortex increased with Reynolds number (Re) that was increasing with time. This was because as Re increased, more fluid particles were displaced from the front face of the plate at a time. More displacement of the fluid particles led to shear layers separating from the plate edges with stronger momentum resulting in larger vortex ring. The shape of the primary vortex depended on the shape of the accelerating plate. For the circular plate, all the points on the front edge being equidistant from the plate centroid, fluid particles were evenly displaced from that separation edge. The result was an axis-symmetric ring of primary vortex around a circular vortex core. The asymmetric plates (triangular and square) did not evenly displace air particles from their edges of separation. The result was an asymmetric vortex ring. More air particles separated from the plate at separation points closest to the plate centroid and led to the largest vortical structure there. That is; the primary vortex ring was largest at the midpoints of the plate edges because they were the closest points of separation from the plate centroid. The size of the primary vortex continuously reduced from the mid-points of the plate edges to the corners. The corners had the smallest primary vortical structure due to being furthest points of separation from the plate centroid. The parts of the vortex ring from the two edges of the plate interacted at the corner connecting those edges. / MT 2017
32

On steady subsonic flows with non-trivial vorticities. / CUHK electronic theses & dissertations collection

January 2012 (has links)
本論文討論了具有非平凡旋度的穩態亞音速流體的適定性問題。 / 首先,我們研究了通過無限長週期管道的二維亞音速流禮。當管道某一週期位置伯努利函數擾動很小,且質量數介於與適當的範圍時,有且僅有唯一的亞音速流禮。特別地,對於伯努利函數為常值的情形,我們還通過結構緊性的方法證明了亞音速-音速流體的存在性。此時,質量數可以達到一臨界值。謝春景和辛周平在處理二維司壓歐拉方程時曾引入了一個重要的處理方法一一流函數表達式。然而,對於週期流體的問題,伯努利函數和流函數的相互關係是無法事先確定的。為此,我們建立了一個關於流函數的非線性映射。該映射的不動點給出了相應歐拉方程的解。 / 其次,對於二維亞音速流體通過對稱障礙物的問題,當來流的伯努利函數關於y方向對稱,且擾動很小時,我們給出了流体的存在性和唯一性的証明。这里,我們利用歐拉方程的流函數方法,得到了對應于流函數的二階方程的解。能量方法以及動量場與來流動量場之差的L2可積性給出了流函數的漸進行為。這一漸進行為結合障礙物外無駐點的事實說明了流函數表示與原先歐拉方程是相容的。 / 最后,我們研究了當給定管道壁上法向动量時,三維穩態流體通過方體管道的問題。如果入口處伯努利函數的擾動和旋度的法向分量為零,則當邊界的法向動量不超過一臨界值時,無旋的亞音速流體存在。對於一般情形,若伯努利函數的擾動和旋度的法向分量很小時,我們利用將速度均分解均無旋部分和旋度部分的方法給出了流體存在性的證明。這裡,我們通過求解一加權的散旋系統得到了旋度部份的解:而無旋部份則由一擬線性橢圓方程的解給出。 / In this thesis, the wellposedness theory of steady subsonic flows with nontrivial vorticities is studied in various aspects. / First, we study 2-D subsonic flows through infinitely long periodic nozzles. It is showed that when mass flux lies in a suitable regime and the variation of Bernoulli's function at some given section is sufficiently small, there exists a unique global subsonic flow in the periodic nozzle. In particular, if Bernoulli's function is a constant, the existence of subsonic flow is also obtained when mass flux takes the critical number by a compensated compactness framework. One of the main tools to handle 2-D compressible Euler equations is the stream function formulation first established by Xie and Xin. The main difficulty in adapting this formulation in periodic nozzles is that the relation between Bernoulli's function and stream function cannot be fixed. We resolve this difficulty via setting up a nonlinear map from stream function at the given section to itself. The fixed point of this map induces a solution of corresponding Euler equations. / Second, the existence and uniqueness of 2-D subsonic flows past a symmetric body are established under the assumption that Bernoulli's function is given symmetrically in the upstream with small variation. By the stream function formulation for 2-D compressible Euler equations, one obtains the solution of the Euler equations via solving a quasilinear second order equation for stream function. This is achieved with the help of the theory of elliptic equations of two variables. Asymptotic behavior for the stream function is obtained via energy method and L²-integral of the difference between the momentum and its asymptotic behavior in the upstream. The asymptotic behavior, together with the property that stagnation points are absent outside the body, yields that the stream function formulation is consistent with the original Euler system. / Finally, we study the existence of 3-D steady subsonic flows in rectangular nozzles when prescribing the normal component of the momentum on the boundary. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit vanish, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. In general, if the normal component of the vorticity and the variation of Bernoulli's function are both sufficiently small, we prove the existence of Euler flows by decomposing the velocity into the vortical part and the potential part. A div-curl system with given weighted function is used to obtain the vortical part and the potential part is induced by the solution to a quasilinear elliptic equation. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Chao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 111-120). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Preliminaries --- p.12 / Chapter 3 --- 2-D subsonic flows through in finitely long periodic nozzles --- p.23 / Chapter 3.1 --- Introduction and main result --- p.23 / Chapter 3.2 --- Stream function formulation of potential flows --- p.27 / Chapter 3.2.1 --- Bernoulli's law and stream function formulation --- p.27 / Chapter 3.2.2 --- Potential flows and proof of Theorem 3.1.1 --- p.30 / Chapter 3.3 --- Analysis of the well-posedness of Euler flows --- p.32 / Chapter 3.3.1 --- Existence, uniqueness, and periodicity of truncated flows --- p.34 / Chapter 3.3.2 --- Existence and uniqueness of Euler flflows --- p.41 / Chapter 4 --- 2-D subsonic flows past a symmetric body --- p.47 / Chapter 4.1 --- Motivation and mathematical formulation --- p.47 / Chapter 4.2 --- Truncated problem --- p.53 / Chapter 4.3 --- Asymptotic behavior at upstream and downstream --- p.59 / Chapter 4.4 --- Existence and uniqueness of Euler flflows --- p.61 / Chapter 5 --- 3-D subsonic Euler flows through nitely long nozzles --- p.67 / Chapter 5.1 --- Mathematical formulation and main results --- p.67 / Chapter 5.2 --- Some preliminaries --- p.71 / Chapter 5.3 --- 3-D potential flows --- p.76 / Chapter 5.3.1 --- Apriori estimates for truncated potential flows --- p.77 / Chapter 5.3.2 --- Existence and uniqueness of potential flows --- p.91 / Chapter 5.4 --- General 3-D steady Euler systems --- p.94 / Chapter 6 --- Further discussions and future work --- p.109 / Bibliography --- p.111
33

Unsteady airfoil pressures induced by perturbation of the trailing edge flow

Lorber, Peter Frederick January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO. / Includes bibliographical references. / by Peter Frederick Lorber. / M.S.
34

Development of a cycloidal propulsion computer model and comparison with experiment

McNabb, Michael Lynn. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Aerospace Engineering. / Title from title screen. Includes bibliographical references.
35

Pressure measurements for periodic fully developed turbulent flow in rectangular interrupted-plate ducts

McBrien, Robert K., 1958- January 1986 (has links)
No description available.
36

Slow second order reactions within turbulent jets in a crossflow

D'Souza, Rupert 05 1900 (has links)
No description available.
37

A numerical study of viscous flows around stalled flat plate wings

Qian, Ping 08 1900 (has links)
No description available.
38

Unsteady heat transfer measurements in a rotating gas turbine stage

Hilditch, Mary Anne January 1989 (has links)
As the performance required of high pressure turbines continues to increase, there is a need to investigate many details of the flow which occur in a gas turbine stage that were previously overlooked. These include the effects of rotation and three-dimensional flow as well as unsteady effects due to the relative motion of the blade rows. In order to obtain a better understanding of the turbine flowfield a new transient facility has been commissioned in which aerodynamic and heat transfer measurements can be undertaken in a full stage turbine at engine representative conditions. The previously used technique of measuring the heat transfer rate by mounting thin film gauges on models manufactured from machineable glass ceramic was not suitable for use on the rotor blade because of the high stress levels involved. An alternative technique has been developed in which a metal turbine blade is coated with an insulating layer of enamel and thin film gauges painted on top. The developments in signal processing and calibrations which were necessary for the use of this type of thin film gauge are discussed in detail. Signal conditioning electronics have been developed which permit amplification of the thin film gauge output to a higher level within the rotating frame before transmission through a slipring. Extensive tests have been undertaken, in a purpose built spinning rig, to establish the effects of rotation on the performance and mechanical integrity of the instrumentation and associated electronics. The heat transfer measurements recorded in the rotor facility to date are presented and compared with data from a previous two-dimensional simulation of wake passing flow on the mid-height section of the same blade.
39

A Lagrangian formulation of the Euler equations for subsonic flows /

Lu, Ming, 1968- January 2007 (has links)
This thesis presents a Lagrangian formulation of the Euler equations for subsonic flows. A special coordinate transformation is used to define the Lagrangian coordinates, namely the stream function and the Lagrangian distance, in function of the Cartesian coordinates. This Lagrangian formulation introduces two new geometry state variables, and a Lagrangian behavior parameter defining a pseudo-Lagrangian time used during the iteration procedure to obtain the solution for subsonic flows. / The eigenstructure and characteristics analysis for the new system of equations is based on a linear Jacobian matrix-mapping procedure, which starts from the well-known eigenstructure and characteristics in the Eulerian plane and uses the coordinate transformation to find their counterparts in the Lagrangian plane. This analysis studies the basic properties of the Euler equations in the Lagrangian formulation, such as hyperbolicity, homogeneity and rotational invariance. The Riemann problem in the Lagrangian plane is also studied. Those elements are used to construct the numerical scheme for solving the Euler equations in the Lagrangian formulation. / The numerical scheme is constructed using first and second-order dimensional-splitting with hybrid flux operators, based on flux vector splitting and Godunov methods, which include a 2-D Riemann solver in the Lagrangian plane. The numerical method is validated by comparing the present solutions with the results obtained with an Eulerian formulation for several internal flows. / This numerical method based on a Lagrangian formulation has also been extended for the solution of unsteady subsonic flows by using a dual time approach. The method validation in this case has been done by comparison with the Eulerian formulation solutions for several internal subsonic flows with oscillating boundaries.
40

Development of an Efficient Design Method for Non-synchronous Vibrations

Spiker, Meredith Anne. January 2008 (has links)
Thesis (Ph. D.)--Duke University, 2008. / Includes bibliographical references.

Page generated in 0.0814 seconds