• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Simulator Motion Drive Algorithms for Airplane Upset Simulation

Ko, Shuk Fai (Eska) 14 February 2013 (has links)
Currently, it is uncertain how well a typical ground-based simulator's hexapod motion system can simulate the aggressive motion during airplane upset. To address this issue, this thesis attempts to improve simulator motion for upset recovery simulation by defining new motion fidelity criteria, implementing body frame filtering, and improving an existing adaptive motion drive algorithm. The successfully improved adaptive algorithm was used to conduct a paired comparison experiment to study the effects of trade-offs between translational and rotational motion cues on pilot subjective fidelity and upset recovery performance. Analysis of the experimental data found that pilots generally rejected motion with false lateral cues and they preferred the presence of rotational cues for moderate roll angles. Also, performance analysis suggested that roll cues helped improve lateral control. Overall, pilots preferred to have simulator motion during upset simulation and significant improvements in performance were observed when simulator motion was present.
2

Investigation of Simulator Motion Drive Algorithms for Airplane Upset Simulation

Ko, Shuk Fai (Eska) 14 February 2013 (has links)
Currently, it is uncertain how well a typical ground-based simulator's hexapod motion system can simulate the aggressive motion during airplane upset. To address this issue, this thesis attempts to improve simulator motion for upset recovery simulation by defining new motion fidelity criteria, implementing body frame filtering, and improving an existing adaptive motion drive algorithm. The successfully improved adaptive algorithm was used to conduct a paired comparison experiment to study the effects of trade-offs between translational and rotational motion cues on pilot subjective fidelity and upset recovery performance. Analysis of the experimental data found that pilots generally rejected motion with false lateral cues and they preferred the presence of rotational cues for moderate roll angles. Also, performance analysis suggested that roll cues helped improve lateral control. Overall, pilots preferred to have simulator motion during upset simulation and significant improvements in performance were observed when simulator motion was present.

Page generated in 0.1112 seconds