• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 177
  • 53
  • 26
  • 20
  • 15
  • 10
  • 9
  • 6
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 1025
  • 198
  • 89
  • 77
  • 71
  • 70
  • 67
  • 65
  • 59
  • 59
  • 59
  • 56
  • 56
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Effect of potassium supply on the uptake of radiocaesium by crops

Zhu, Yongguan January 1998 (has links)
No description available.
62

Mechanisms of metal binding and resistance to toxic metals in bacteria from soils polluted with toxic metals

Clark, Amy Louise January 2001 (has links)
No description available.
63

Dietary and physiological factors influencing iron absorption in the rat

Swindell, T. E. January 1988 (has links)
No description available.
64

Identification of factors governing cadmium and zinc bioavailability in polluted soils

Hamon, Rebecca January 1995 (has links)
No description available.
65

The potential of Tithonia diversifolia and other species as green manures for highly productive farming systems in the Nepalese Terai

Sherchan, Dil Prasad January 2001 (has links)
No description available.
66

The influence of training status on the physiological responses to exercise of young girls

McNarry, Melitta Anne January 2010 (has links)
Exercise training represents a potent stimulus to the parameters of aerobic and anaerobic fitness in adults; whether the same is true in young girls is unclear. For some parameters, such as peak oxygen uptake, the influence of training status remains controversial whilst for other parameters, such as oxygen uptake kinetics, the influence of training status remains simply uninvestigated in young girls. Despite this lack of empirical evidence, it has been suggested for some time now that children may lack trainability and that this may be related to the presence of a maturational threshold below which significant adaptations to training cannot occur. This suggestion requires investigation, not least because the findings of some studies which appear to support this contention may in reality be a reflection of the use of an inappropriate test modality for the investigation of training status influences. The purpose of this thesis was therefore to determine the physiological trainability of girls at different stages of maturation and to investigate the interaction between training status, maturity and exercise modality. To achieve this purpose a series of 5 studies was completed, in which trained and untrained girls completed ramp incremental exercise, constant-work-rate exercise and Wingate exercise on two exercise modalities, one upper (arm crank) and one lower body (cycle). During these tests, cardiovascular, respiratory, metabolic and mechanical power parameters were assessed. In response to ramp incremental exercise, trained girls were shown to have a higher peak O2, SV and at all stages of maturity, along with an altered SV and fractional muscle oxygen extraction pattern, irrespective of exercise modality. The importance of exercise modality was evident during heavy intensity constant-work-rate exercise in pre-pubertal girls, where training status was only associated with significant influences on O2 kinetics (faster phase II time constant in trained girls) during upper body ergometry. In contrast, pubertal trained girls had faster O2 kinetics during both exercise modalities, an influence which may suggest both central and peripheral adaptations to the delivery and utilisation of oxygen. Exercise modality was also revealed to be an important factor in the demonstration of training status influences during a 30 s Wingate test, with trained girls at all stages of maturity exhibiting higher mechanical power indices during upper body ergometry only. An influence of training status was also evident in the lower fatigue index found in the trained girls at all stages of maturity during both modalities, but no influence was found in the oxidative contribution to the Wingate test. None of these studies revealed an influence of maturity status in determining the magnitude of training status effects. Overall, the 5 studies encompassed within this thesis demonstrate that children are trainable and that this is not moderated by maturity.
67

Advanced Aerogel Composites for Oil Remediation and Recovery

Karatum, Osman January 2016 (has links)
<p>Oil spills in marine environments often damage marine and coastal life if not remediated rapidly and efficiently. In spite of the strict enforcement of environmental legislations (i.e., Oil Pollution Act 1990) following the Exxon Valdez oil spill (June 1989; the second biggest oil spill in U.S. history), the Macondo well blowout disaster (April 2010) released 18 times more oil. Strikingly, the response methods used to contain and capture spilled oil after both accidents were nearly identical, note that more than two decades separate Exxon Valdez (1989) and Macondo well (2010) accidents. </p><p>The goal of this dissertation was to investigate new advanced materials (mechanically strong aerogel composite blankets-Cabot® Thermal Wrap™ (TW) and Aspen Aerogels® Spaceloft® (SL)), and their applications for oil capture and recovery to overcome the current material limitations in oil spill response methods. First, uptake of different solvents and oils were studied to answer the following question: do these blanket aerogel composites have competitive oil uptake compared to state-of-the-art oil sorbents (i.e., polyurethane foam-PUF)? In addition to their competitive mechanical strength (766, 380, 92 kPa for Spaceloft, Thermal Wrap, and PUF, respectively), our results showed that aerogel composites have three critical advantages over PUF: rapid (3-5 min.) and high (more than two times of PUF’s uptake) oil uptake, reusability (over 10 cycles), and oil recoverability (up to 60%) via mechanical extraction. Chemical-specific sorption experiments showed that the dominant uptake mechanism of aerogels is adsorption to the internal surface, with some contribution of absorption into the pore space. </p><p>Second, we investigated the potential environmental impacts (energy and chemical burdens) associated with manufacturing, use, and disposal of SL aerogel and PUF to remove the oil (i.e., 1 m3 oil) from a location (i.e., Macondo well). Different use (single and multiple use) and end of life (landfill, incinerator, and waste-to-energy) scenarios were assessed, and our results demonstrated that multiple use, and waste-to-energy choices minimize the energy and material use of SL aerogel. Nevertheless, using SL once and disposing via landfill still offers environmental and cost savings benefits relative to PUF, and so these benefits are preserved irrespective of the oil-spill-response operator choices. </p><p>To inform future aerogel manufacture, we investigated the different laboratory-scale aerogel fabrication technologies (rapid supercritical extraction (RSCE), CO2 supercritical extraction (CSCE), alcohol supercritical extraction (ASCE)). Our results from anticipatory LCA for laboratory-scaled aerogel fabrication demonstrated that RSCE method offers lower cumulative energy and ecotoxicity impacts compared to conventional aerogel fabrication methods (CSCE and ASCE). </p><p>The final objective of this study was to investigate different surface coating techniques to enhance oil recovery by modifying the existing aerogel surface chemistries to develop chemically responsive materials (switchable hydrophobicity in response to a CO2 stimulus). Our results showed that studied surface coating methods (drop casting, dip coating, and physical vapor deposition) were partially successful to modify surface with CO2 switchable chemical (tributylpentanamidine), likely because of the heterogeneous fiber structure of the aerogel blankets. A possible solution to these non-uniform coatings would be to include switchable chemical as a precursor during the gel preparation to chemically attach the switchable chemical to the pores of the aerogel. </p><p>Taken as a whole, the implications of this work are that mechanical deployment and recovery of aerogel composite blankets is a viable oil spill response strategy that can be deployed today. This will ultimately enable better oil uptake without the uptake of water, potential reuse of the collected oil, reduced material and energy burdens compared to competitive sorbents (e.g., PUF), and reduced occupational exposure to oiled sorbents. In addition, sorbent blankets and booms could be deployed in coastal and open-ocean settings, respectively, which was previously impossible.</p> / Dissertation
68

Multi-level multi-scaled metabolites simulation

Li, Hao January 2016 (has links)
Diabetes is a world-wide health problem with 415 millions of people suffering from the disease. Most diabetics are suffering from Type 2 Diabetes, which is preceded by insulin resistance in glucose utilizing tissues, such as adipose, liver, and muscle tissues. Diabetes is diagnosed when the insulin control of the glucose levels fails, which leads to high glucose levels in the blood. To better understand the insulin control of blood glucose, mathematical modeling has been used for many years to simulate the dynamics of glucose and insulin levels in the blood. Models have also been used to understand the intracellular insulin-signaling network in the insulin responding tissues. There have also been attempts to connect models from these different layers of control into a multi-level and multi-scale simulation model. However, to do such connections, several assumptions must be made about the comparability of the data from the different levels. Here, I aim for a deeper understanding of these assumptions and to use more advanced data for glucose uptake dynamics than in earlier work. I used data from the literature for the dynamics of glucose uptake in adipose and muscle tissues and improve the model in several steps to have a better agreement with these data. In particular, I refined the sub-division of the glucose uptake between the organs, to also account for liver uptake, a correction that implied a reduction by 50% for the muscle and adipose tissue glucose uptake. Unlike previous models, the updated model also describes blood flow. Finally, because of the connection to the intracellular level, the model can be used to simulate the response to anti-diabetic drugs.
69

Analysis of Biological Materials Using a Nuclear Microprobe

Mulware, Stephen Juma 12 1900 (has links)
The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe (III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world’s agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices) for the improvement of lead-phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.
70

Balanced nutrition and crop production practices for the study of grain sorghum nutrient partitioning and closing yield gaps

McHenry, Bailey Marie January 1900 (has links)
Master of Science / Agronomy / Ignacio Ciampitti / P. V. Vara Prasad / Mid-west grain sorghum (Sorghum bicolor (L.) Moench) producers are currently obtaining much lower than attainable yields across varying environments, therefore, closing yield gaps will be important. Yield gaps are the difference between maximum economic attainable yield and current on-farm yields. Maximum economic yield can be achieved through the optimization of utilizing the best genotypes and management practices for the specific site-environment (soil-weather) combination. This research project examines several management factors in order to quantify complex farming interactions for maximizing sorghum yields and studying nutrient partitioning. The factors that were tested include narrow row-spacing (37.5 cm) vs. standard wide row-spacing (76 cm), high (197,600 seeds haˉ¹) and low (98,800 seeds haˉ¹) seeding rates, balanced nutrient management practices including applications of NPKS and micronutrients (Fe and Zn), crop protection with fungicide and insecticide, the use of a plant growth regulator, and the use of precision Ag technology (GreenSeeker for N application). This project was implemented at four sites in Kansas during 2014 (Rossville, Scandia, Ottawa, and Hutchinson) and 2015 (Topeka, Scandia, Ottawa, Ashland Bottoms) growing seasons. Results from both years indicate that irrigation helped to minimize yield variability and boost yield potential across all treatments, though other factors affected the final yield. In 2014, the greatest significant yield difference under irrigation in Rossville, KS (1.32 Mg haˉ¹) was documented between the ‘low-input’ versus the ‘high-input’ treatments. The treatment difference in grain sorghum yields in 2014 was not statistically significant. In 2014, the Ottawa site experienced drought-stress during reproductive stages of plant development, which resulted in low yields and was not influenced by the cropping system approach. In 2015 the treatments were significant, and in Ottawa, narrow row spacing at a lower seeding rate maximized yield for this generally low-yielding environment (<6 Mg haˉ¹) (treatment two at 6.26 vs. treatment ten at 4.89 Mg haˉ¹). Across several sites, including Rossville, Hutchinson, Scandia, Topeka, and Ashland, a similar trend of narrow row spacing promoting greater yields has been documented. Additionally, when water was not limiting sorghum yields (i.e., under irrigation), a balanced nutrient application and optimization of production practices did increase grain sorghum yields (‘high-input’ vs. ‘low-input’; the greatest difference was seen in 2014 in Rossville, 1.2 Mg haˉ¹, and in 2015 in Ashland, 1.98 Mg haˉ¹). In the evaluation of nutrient uptake and partitioning in different plant fractions, there was variability across all site-years which did not always follow the same patterns as the yield, however, the low-input treatment was shown to have significantly lower nutrient uptakes across all the nutrients evaluated (N, P, K, S, Fe, Zn) and across most fractions and sampling times. The objectives of this project were to identify management factors that contributed to high sorghum yields in diverse environments, and to investigate nutrient uptake and partitioning under different environments and crop production practices.

Page generated in 0.0598 seconds