Spelling suggestions: "subject:"upwind chemes"" "subject:"upwind achemes""
1 |
Well-balanced Central-upwind SchemesJanuary 2015 (has links)
Flux gradient terms and source terms are two fundamental components of hyperbolic systems of balance law. Though having distinct mathematical natures, they form and maintain an exact balance in a special class of solutions, which are called steady-state solutions. In this dissertation, we are interested in the construction of well-balanced schemes, which are the numerical methods for hyperbolic systems of balance laws that are capable of exactly preserving steady-state solutions on the discrete level. We first introduce a well-balanced scheme for the Euler equations of gas dynamics with gravitation. The well-balanced property of the designed scheme hinges on a reconstruction process applied to equilibrium variables---the quantities that stay constant at steady states. In addition, the amount of numerical viscosity is reduced in the areas where the flow is in (near) steady-state regime, so that the numerical solutions under consideration can be evolved in a well-balanced manner. We then consider the shallow water equations with friction terms, which become very stiff when the water height is close to zero. The stiffness in the friction terms introduces additional difficulty for designing an efficient well-balanced scheme. If treated explicitly, the stiff friction terms impose a severe restriction on the time step. On the other hand, a straightforward (semi-) implicit treatment of the stiff friction terms can greatly enhance the efficiency, but will break the well-balanced property of the resulting scheme. To this end, we develop a new semi-implicit Runge-Kutta time integration method that is capable of maintaining the well-balanced property under the time step restriction determined exclusively by non-stiff components in the underlying equations. The well-balanced property of our schemes are tested and verified by extensive numerical simulations, and notably, the obtained numerical results clearly indicate that the well-balanced property plays an important role in achieving high resolutions when a coarse grid is used. / acase@tulane.edu
|
2 |
Central-Upwind Schemes for Shallow Water ModelsJanuary 2016 (has links)
acase@tulane.edu / Shallow water models are widely used to describe and study fluid dynamics phenomena where the horizontal length scale is much greater than the vertical length scale, for example, in the atmosphere and oceans. Since analytical solutions of the shallow water models are typically out of reach, development of accurate and efficient numerical methods is crucial to understand many mechanisms of atmospheric and oceanic phenomena. In this dissertation, we are interested in developing simple, accurate, efficient and robust numerical methods for two shallow water models --- the Saint-Venant system of shallow water equations and the two-mode shallow water equations.
We first construct a new second-order moving-water equilibria preserving central-upwind scheme for the Saint-Venant system of shallow water equations. Special reconstruction procedure and source term discretization are the key components that guarantee the resulting scheme is capable of exactly preserving smooth moving-water steady-state solutions and a draining time-step technique ensures positivity of the water depth. Several numerical experiments are performed to verify the well-balanced and positivity preserving properties as well as the ability of the proposed scheme to accurately capture small perturbations of moving-water steady states. We also demonstrate the advantage and importance of utilizing the new method over its still-water equilibria preserving counterpart.
We then develop and study numerical methods for the two-mode shallow water equations in a systematic way. Designing a reliable numerical method for this system is a challenging task due to its conditional hyperbolicity and the presence of nonconservative terms. We present several numerical approaches---two operator splitting methods (based on either Roe-type upwind or central-upwind scheme), a central-upwind scheme and a path-conservative central-upwind scheme---and test their performance in a number of numerical experiments. The obtained results demonstrate that a careful numerical treatment of nonconservative terms is crucial for designing a robust and highly accurate numerical method for this system. / 1 / Yuanzhen Cheng
|
3 |
Experimental and Numerical Investigations of the Effects of Incident Turbulence on the Flow Over a Surface-Mounted PrismEl-Okda, Yasser Mohamed 21 March 2005 (has links)
The issue of the effects of free stream turbulence on the flow field over a surface-mounted prism is examined through experimental and numerical investigations. In the experimental studies, particle image velocimetry measurements are conducted in the ESM water tunnel at Reynolds number of $9,600$ and under two cases of turbulent inflow conditions. The results show that the mean flow separation, reattachment and parameters such as mean velocity, root mean square, Reynolds stresses and turbulent kinetic energy are affected by the turbulence characteristics of the incident flow. The instantaneous dynamics of the interactions between the separating shear layer and the solid wall and between the shear layer and the turbulence in the incident flow are detailed.
In the numerical studies, large eddy simulations of the flow over a surface-mounted prism under two inflow conditions, namely, smooth inflow and isotropic homogeneous turbulence inflow, are performed. The use of a fifth-order scheme (CUD-II-5), which is a member of a family of Compact Upwind Difference schemes, in large eddy simulations of this flow is assessed. The performance of this scheme is validated by comparing the rate of temporal decay of isotropic turbulence with available experimental measurements for grid-generated turbulence. The results show that the spectra are sensitive to the method of flux vector splitting needed for the implementation of the upwind scheme. With van Leer splitting, the CUD-II-5 scheme is found to be too dissipative. On the other hand, using the Lax-Friedrichs vector splitting yields good agreement with experiments by controlling the level of artificial dissipation. This led us to recommend a new procedure, we denote by C6CUD5 scheme, that combines a compact sixth-order scheme with the CUD-II-5 scheme for large eddy simulation of complex flows. The simulation results, including flow patterns, pressure fields and turbulence statistics show that the CUD-II-5 scheme, with Lax-Friedricks flux vector splitting, provides high resolution of local flow structures. The results present new physical aspects of the flow topology over surface-mounted prisms. The effects of the incident homogeneous turbulence on the size of the separation region and suction pressures are determined by pointing out differences in the flow topologies between the two incident flow cases. / Ph. D.
|
4 |
Advanced numerical solver for dam-break flow applicationPu, Jaan H., Bakenov, Z., Adair, D. January 2012 (has links)
No
|
5 |
Simulação numérica de equações de conservação usando esquemas \"upwind / Numerical simulation of conservations equations using upwind schemesBertoco, Juliana 19 April 2012 (has links)
Uma família de esquemas upwind denominada FUS-RF (Family of Upwind Scheme via Rational Functions), que é derivada via funções racionais e dependentes de parâmetros, é proposta para o cálculo de soluções aproximadas de equações de conservação. A fim de ilustrar a capacidade dos novos esquemas, vários resultados computacionais para sistemas hiperbólicos de leis de conservação são apresentados. Esses testes mostram a inflluência dos parâmetros escolidos sobre a qualidade dos resultados numéricos. Fazendo o uso de alguns testes de padrões, comparação dos novos limitadores de fluxo correspondentes com o esquema bem estabelecido van Albada e esquema atual EPUS (Eight-degree Polynomial Upwind Scheme) é também realizada. Os testes numéricos realizados em transporte de escalares e problemas de dinâmica dos gases confirmam que alguns esquemas da família FUS-RF são não oscilatórios e fornecem resultados confiáveis quando perfis descontínuos são transportados. Um esquema particular dessa nova família de esquemas upwind é então selecionado e utilizado para resolver escoamentos complexos com superfícies livres móveis / A family of upwind schemes named as FUS-RF (Family of Upwind Scheme via Rational Functions), which is derived via rational functions and dependent of parameters, is proposed for computing approximated solutions of conservation equations. In order to illustrate the capability of the new schemes, several computational results for system of hyperbolic conservation laws are presented. These results clarify the influence of the chosen parameters on the quality of the numerical calculations. Using some standard test cases, comparison of the new corresponding limiters with the well established van Albada and the recently introduced EPUS (Eight-degree Polynomial Upwind Scheme) limiters is also done. Numerical tests on both scalar and gas dynamics problems confirm that some schemes of the FUS-RF family are non-oscillatory and yield sharp results when solving profiles with discontinuities. A particular upwind scheme of this new family is then slected and used for solving complex incompressible moving free surface flows
|
6 |
Implicit, Multigrid And Local-Preconditioning Procedures For Euler And Navier-Stokes Computations With Upwind SchemesAmaladas, J Richard 06 1900 (has links) (PDF)
No description available.
|
7 |
Simulação numérica de equações de conservação usando esquemas \"upwind / Numerical simulation of conservations equations using upwind schemesJuliana Bertoco 19 April 2012 (has links)
Uma família de esquemas upwind denominada FUS-RF (Family of Upwind Scheme via Rational Functions), que é derivada via funções racionais e dependentes de parâmetros, é proposta para o cálculo de soluções aproximadas de equações de conservação. A fim de ilustrar a capacidade dos novos esquemas, vários resultados computacionais para sistemas hiperbólicos de leis de conservação são apresentados. Esses testes mostram a inflluência dos parâmetros escolidos sobre a qualidade dos resultados numéricos. Fazendo o uso de alguns testes de padrões, comparação dos novos limitadores de fluxo correspondentes com o esquema bem estabelecido van Albada e esquema atual EPUS (Eight-degree Polynomial Upwind Scheme) é também realizada. Os testes numéricos realizados em transporte de escalares e problemas de dinâmica dos gases confirmam que alguns esquemas da família FUS-RF são não oscilatórios e fornecem resultados confiáveis quando perfis descontínuos são transportados. Um esquema particular dessa nova família de esquemas upwind é então selecionado e utilizado para resolver escoamentos complexos com superfícies livres móveis / A family of upwind schemes named as FUS-RF (Family of Upwind Scheme via Rational Functions), which is derived via rational functions and dependent of parameters, is proposed for computing approximated solutions of conservation equations. In order to illustrate the capability of the new schemes, several computational results for system of hyperbolic conservation laws are presented. These results clarify the influence of the chosen parameters on the quality of the numerical calculations. Using some standard test cases, comparison of the new corresponding limiters with the well established van Albada and the recently introduced EPUS (Eight-degree Polynomial Upwind Scheme) limiters is also done. Numerical tests on both scalar and gas dynamics problems confirm that some schemes of the FUS-RF family are non-oscillatory and yield sharp results when solving profiles with discontinuities. A particular upwind scheme of this new family is then slected and used for solving complex incompressible moving free surface flows
|
8 |
Estratégias "upwind" e modelagem k-epsilon para simulação numérica de escoamentos com superfícies livres em altos números de Reynolds / Upwind strategies and k-epsilon modeling for numerical simulation of free surface flow at high Reynolds numbersBrandi, Analice Costacurta 13 June 2005 (has links)
Este trabalho é dedicado à análise e implementação de esquemas "upwind" de alta ordem modernos e o modelo de turbulência k-epsilon padrão no Freeflow-2D; um ambiente integrado para simulação numérica em diferenças finitas de problemas de escoamentos incompressíveis com superfícies livres. O propósito do estudo é a simulação de escoamentos de fluidos newtonianos incompressíveis, bidimensionais, confinados e/ou com superfícies livres e a altos valores do número de Reynolds. O desempenho do código Freeflow-2D atual é avaliada na simulação do escoamento numa expansão brusca e de um jato livre incidindo perpendicularmente sobre uma superfície rígida impermeável. O código é então aplicado na simulação de um jato planar turbulento em uma porção de fluido com superfície livre e estacionário. Os resultados numéricos obtidos são comparados com dados experimentais, soluções analíticas e soluções numéricas de outros trabalhos. / This work is devoted to the analysis and implementation of modern high-order upwind schemes and the standard k-epsilon turbulence model into the Freeflow-2D; a finite difference integrated environment for the numerical simulation of incompressible free surface flow problems. The purpose of this study is the two-dimensional simulation of high-Reynolds incompressible newtonian confined and/or free surface flows. The performance of the current Freeflow-2D code is assessed by applying it to the simulation of flow over a backward facing step and of an impinging free jet onto an impermeable rigid surface. The code is then applied to a turbulent planar jet into a pool. The numerical results are compared with experimental data, analytical solution, and numerical simulations of other works.
|
9 |
Implicit Least Squares Kinetic Upwind Method (LSKUM) And Implicit LSKUM Based On Entropy Variables (q-LSKUM)Swarup, A Sri Sakti 07 1900 (has links)
With increasing demand for computational solutions of fluid dynamical problems, researchers around the world are working on the development of highly robust numerical schemes capable of solving flow problems around complex geometries arising in Aerospace engineering. Also considerable time and effort are devoted to development of convergence acceleration devices, for reducing the computational time required for such numerical solutions. Reduction in run times is very vital for production codes which are used many times in design cycle. In this present work, we consider a numerical scheme called LSKUM capable of operating on any arbitrary distribution of points. LSKUM is being used in CFD center (IIsc) and DRDL (Hyderabad) to compute flows around practical geometries and presently these LSKUM based codes are explicit- It has been observed already by the earlier researchers that the explicit schemes for these methods are robust. Therefore, it is absolutely essential to consider the possibility of accelerating explicit LSKUM by making it LSKUM-Implicit. The present thesis focuses on such a study. We start with two kinetic schemes namely Least Squares Kinetic Upwind Method (LSKUM) and LSKUM based on entropy variables (q-LSKUM). We have developed the following two implicit schemes using LSKUM and q-LSKUM. They are
(i)Non-Linear Iterative Implicit Scheme called LSKUM-NII.
(ii)Linearized Beam and Warming implicit Scheme, called LSKUM-BW.
For the purpose of demonstration of efficiency of the newly developed above implicit schemes, we have considered flow past NACA0012 airfoil as a test example. In this regard we have tested these implicit schemes for flow regimes mentioned below
•Subsonic Case: M∞ = 0.63, a.o.a = 2.0°
•Transonic Case: M∞ = 0.85, a.o.a = 1.0°
The speedup of the above two implicit schemes has been studied in this thesis by operating them on different grid sizes given below
•Coarse Grid: 4074 points
•Medium Grid: 8088 points
•Fine Grid: 16594 points
The results obtained by running these implicit schemes are found to be very much encouraging. It has been observed that these newly developed implicit schemes give as much as 2.8 times speedup compared to their corresponding explicit versions. Further improvement is possible by combining LKSUM-Implicit with modern iterative methods of solving resultant algebraic equations. The present work is a first step towards this objective.
|
10 |
Estratégias "upwind" e modelagem k-epsilon para simulação numérica de escoamentos com superfícies livres em altos números de Reynolds / Upwind strategies and k-epsilon modeling for numerical simulation of free surface flow at high Reynolds numbersAnalice Costacurta Brandi 13 June 2005 (has links)
Este trabalho é dedicado à análise e implementação de esquemas "upwind" de alta ordem modernos e o modelo de turbulência k-epsilon padrão no Freeflow-2D; um ambiente integrado para simulação numérica em diferenças finitas de problemas de escoamentos incompressíveis com superfícies livres. O propósito do estudo é a simulação de escoamentos de fluidos newtonianos incompressíveis, bidimensionais, confinados e/ou com superfícies livres e a altos valores do número de Reynolds. O desempenho do código Freeflow-2D atual é avaliada na simulação do escoamento numa expansão brusca e de um jato livre incidindo perpendicularmente sobre uma superfície rígida impermeável. O código é então aplicado na simulação de um jato planar turbulento em uma porção de fluido com superfície livre e estacionário. Os resultados numéricos obtidos são comparados com dados experimentais, soluções analíticas e soluções numéricas de outros trabalhos. / This work is devoted to the analysis and implementation of modern high-order upwind schemes and the standard k-epsilon turbulence model into the Freeflow-2D; a finite difference integrated environment for the numerical simulation of incompressible free surface flow problems. The purpose of this study is the two-dimensional simulation of high-Reynolds incompressible newtonian confined and/or free surface flows. The performance of the current Freeflow-2D code is assessed by applying it to the simulation of flow over a backward facing step and of an impinging free jet onto an impermeable rigid surface. The code is then applied to a turbulent planar jet into a pool. The numerical results are compared with experimental data, analytical solution, and numerical simulations of other works.
|
Page generated in 0.0652 seconds