• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 410
  • 211
  • 133
  • 74
  • 22
  • 19
  • 16
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • Tagged with
  • 1452
  • 212
  • 141
  • 136
  • 118
  • 112
  • 102
  • 95
  • 81
  • 79
  • 78
  • 72
  • 72
  • 68
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Studies on distillery waste as a biosorbent

Bustard, Mark T. January 1997 (has links)
No description available.
252

Surface studies of the adsorption and heterogeneous decomposition of UF←6 on well characterised surfaces with reference to U CVD

Downing, Edward Nicolas January 1998 (has links)
No description available.
253

Geological, structural, mineralogical and geochemical controls of the formation of the uranium-rich ores in the Streltsovsky ore field, Russia. / Contrôles géologiques, structuraux, minéralogiques et géochimiques sur la formation des minerais riches dans le district minéralisé de Streltsovsky, Russie

Aleshin, Alexei 15 December 2008 (has links)
Les nouveaux travaux que nous avons réalisé nous ont permis d'établir que U et F on été progressivement enrichis depuis les volcanites basiques (170 Ma), jusqu'aux volcanites acides (140 Ma). L'épisode hydrothermal post-magmatique Crétacé (140-125 Ma) a été subdivisé en stades: préminéralisation, synminéralisation et les premier et deuxième stades post-minéralisation. La minéralisation primaire à brannérite-pechblende est associée avec la fluorite. Lors du premier stade postminéralisation les minéraux d'U ont été remplacés par des méta-gels U-Si antérieurement identifiés comme de la coffinite. L'altération anté-minéralisation et la minéralisation U ont été formées par des fluides chlorurés et bicarbonatés sodiques entre 250 et 300°C. La minéralisation U a commencé avec une albitisation et une hématisation de l'encaissant lors de la percolation d'un fluide supercritique à 530-500°C. Brannérite et pechblende ont précipité vers 350-300°C. Les spectres des éléments des terres rares (ETR) de la pechblende localisée dans les trachybasaltes, trachydacites et granites ont une forte anomalie positive en Sm et Nd et un effet tétrade W marqué, caractéristiques différentes de celles des rhyolites dérivées d'une chambre magmatique localisée dans la croûte supérieure. Ces données et l'intervalle de 5 Ma séparant le magmatisme siliceux de la formation de la minéralisation U ne permet pas de proposer que l'U dérive de cette chambre. Nous proposons qu'un magma acide riche en Li et F est la source de l'U. U(IV) ainsi que les ETR ont été fractionnés dans les fluides comme complexes fluorés. La minéralisation U a été déposée au niveau d'une barrière thermique / The ambiguity in the genetic interpretations in the formation of the Mo&U deposits of the Streltsovsky ore field led us to perform additional studies which have established that closely associated U and F were progressively gained in the Late Mesozoic volcanic rocks from the older basic (170 Ma) to the younger silicic ones (140 Ma). The Early Cretaceous postmagmatic hydrothermal epoch (140-125 Ma) is subdivided into preore, U ore, and first and second postore stages. The primary brannerite-pitchblende ore was formed associated with fluorite. During the first postore stage, it was replaced by a U-Si metagel, previously identified as coffinite. The preore metasomatic alteration and related veined mineralization were formed under the effect of Na (bicarbonate) chloride solution at temperatures of 250-200°C. Uranium ore formation began with albitization and hematization of rocks affected by a supercritical fluid at 530-500°C; brannerite and pitchblende precipitated at 350?300°C. The chondrite-normalized REE patterns of pitchblende hosted in trachybasalt, trachydacite, and granite demonstrate a pronounced Sm-Nd discontinuity and a statistically significant tetrad effect of W type. These attributes were not established in REE patterns of rhyolites derived from the upper crustal magma chamber. These data and the gap of 5 Ma between silicic volcanism and ore formation do not allow us to suggest that U was derived from this magma chamber. According to the new proposed model, an evolved silicic Li-F magma was a source of U. U4+, together with REE were fractionated into the fluids as complex fluoride compounds. The U mineralization was deposited at a temperature barrier.
254

Métasomatose sodique et Minéralisations uranifères associées : Exemples du district de Kirovograd-Novoukrainsk (Ukraine), du batholite du Kurupung (Guyana), et du gisement d'Espinharas (Brésil) / Sodium metasomatism associated to uranium mineralization : examples of Kirovograd - Novoukrainsk district (Ukraine), Kurupung batholith (Guyana) and Espinharas ore deposit (Brazil)

Cinelu, Sandrine 31 October 2008 (has links)
Les gisements uranifères Protérozoïques du batholite du Kurupung (2041 ± 29 Ma) situés au Nord-Ouest du Guyana et du district de Kirovograd - Novoukrainsk (granite de Novoukrainsk daté à 2047 ± 19 Ma) situés en Ukraine sont des occurrences où la minéralisation (présente sous la forme d’uraninite, pechblende, oxyde de U-Ti) est associée à une métasomatose sodique. Elles semblent appartenir à un évènement métallogénique Paléoprotérozoïque majeur nouvellement caractérisé dans le cadre de ce travail, et auquel appartiendraient aussi des minéralisations similaires du Sud marocain et de Lagoa Real au Brésil. Le gisement d’Espinharas situé au Brésil, associé aussi à une métasomatose sodique, présente une minéralisation uranifère principalement visible sous la forme de cristaux de coffinite, d’oxyde d’uranium et d’uranothorite. Cette altération hydrothermale se développe selon différents stades : (i) une albitisation avec remplacement isomorphique de l’orthose et du plagioclase par de l’albite puis une dissolution complète du quartz de la roche ; (ii) une cristallisation d’albite automorphe dans les cavités laissées par le quartz suivie par (iii) une cristallisation de minéraux calciques (calcite, épidote, pyroxène), de minéraux d’uranium (uraninite et/ou pechblende et/ou brannérite et/ou oxyde de U-Ti selon les gisements), de zircons hydrothermaux, de chlorite, et parfois de quartz secondaire. Les études isotopiques (delta18Oalbite compris entre 2,2 et 2,9 ‰ pour les albitites d’Ukraine et delta18Oalbite et delta18Ocalcite compris entre 2,8 et 5,3 ‰ pour des albitites du Guyana) et microthermométriques (Th > 350°C) ont permis de montrer que le fluide hydrothermal responsable de cette altération hydrothermale et de la minéralisation est peu salé et d’origine superficielle. Le fluide hydrothermal est de plus sous-saturé en silice mais sursaturé en Na, U et Zr. / The Proterozoic uranium ore deposits of Kurupung batholith (2041 ± 29 Ma, North-West of Guyana) and of Kirovograd - Novoukrainsk (granite dated at 2047 ± 19 Ma, Ukraine) are two occurrences where the mineralization (occurring as uraninite, pitchblende, U-Ti oxide) is associated to sodium metasomatism. These occurrences and also the similar mineralizations of South Morocco and of Lagoa Real (Brazil) seem to belong to a major Paleoproterozoic metallogenic event characterized in this study. The uranium ore deposit of Espinharas (Brazil) is also associated to a sodium mineralization and presents a uranium mineralization mainly occurring as coffinite crystals, uranium oxide and uranothorite. This hydrothermal alteration has different stages: (i) albitization with an isomorphic replacement of orthoclase and plagioclase by albite, following by a complete dissolution of the quartz; (ii) crystallization of euhedral albite in cavities left by quartz leaching, following by (iii) the crystallization of calcic minerals (calcite, epidote, pyroxene), uranium minerals (uraninite and/or pitchblende and/or brannerite and/or U-Ti oxide according the ore deposits), hydrothermal zircons, chlorite, and sometimes secondary quartz. The isotopic study (delta18Oalbite between 2.2 and 2.9 ‰ for Ukraine albitites; delta18Oalbite and delta18Ocalcite are between 2.8 and 5.3 ‰ for Guyana albitites) and the microthermometric study (Th > 350°C) have permit to show that the hydrothermal fluid responsible of this hydrothermal alteration and the mineralization is a surface derived fluid with a less salinity. The hydrothermal fluid is silica under-saturated but over-saturated in Na, U and Zr.
255

Reduction and functionalisation of binuclear uranium-oxo complexes

Jones, Guy Michael January 2013 (has links)
Chapter one introduces uranium oxo chemistry with a focus on the structure, oxogroup reactivity and single electron reduction of the uranyl(VI) dication. In this context, the previous work in our group on the use of Schiff-base Pacman complexes for the reductive functionalisation of uranyl will be discussed. Chapter two details the synthesis of binuclear uranium(V) oxo complexes [(RMe2SiOUO)2(L)] (R = Me, Ph) by oxo group rearrangement and reductive silylation of uranyl(VI) silylamido precursors. The electronic structure and magnetic behaviour of the complexes are presented as well as insights into the mechanism of formation and stability. Chapter three describes the reduction and desilylation reactions of [(Me3SiOUO)2(L)]. It begins with the one- and two-electron reductions of [(Me3SiOUO)2(L)] and continues with the reactivity of the resultant mixed-valence complex K[(Me3SiOUO)2(L)]. The reactivity of the UIVUIV complex K2[(Me3SiOUO)2(L)] with water is detailed and the products, K[(OUVO)(OUIVOSiMe3)(L)] and a U12O24L6 supramolecular wheel are reported. The oxidation of K2[(Me3SiOUO)2(L)] with pyridine-N-oxide is demonstrated as a route to metalated K2[(OUO)2(L)] complexes, and the synthesis of Li2[(OUO)2(L)] and the mixed lithiated/silylated complex Li[(OUO)(OUOSiMe3)(L)] are presented as direct routes to Mx[(OUO)2(L)] complexes. Chapter four discusses the reactivity of M2[(OUO)2(L)] (M = K, Li) towards oxidation and oxo-functionalisation. The oxo- and peroxo-bridged binuclear uranyl(VI) complexes K2[(UO2)2(μ-X)(L)] (X = O2–, O2 2–) are reported from the reaction of K2[(OUO)2(L)] with different oxo-oxidising agents and the new, Group 14-functionalised oxo complexes [(ROUO)2(L)] (R = stannyl or alkyl group) are described showing similar structures, bonding and stabilities to the silylated complexes. Chapter five describes the uranyl(VI) complexes of other polypyrrolic ligands. The uranyl(VI) chemistry of the anthracenyl- and fluorenyl-substituted Pacman ligands LF and LA is demonstrated as a means of using macrocyclic control to govern the nature of the complexes formed. Uranyl(VI) complexes of the polypyrrolic, tripodal ligand H3LT are shown to form either molecular species or supramolecular gels depending on the solvent used. Chapter six concludes the work presented in this Thesis. Chapter seven outlines all experimental details.
256

Effects of crystallographic transformations on the photoelectric emission from uranium

Fry, Richard Kent. January 1958 (has links)
Call number: LD2668 .T4 1958 F79 / Master of Science
257

A study of the factors influencing the life cycle of synthetic anion exchange resins, with special reference to the extraction of uranium

Robinson, R. E. January 1953 (has links)
A Thesis presented in the University of the Witwatersrand, Johannesburg for the degree of Doctor of Philosophy, 1953 / Investigations have been carried out into the life of various Anion Exchange Resins employed on the Rand for the extraction of uranium from the uranium Leach Liquors. It was found that in the case of the leach liquors produced at the western Reefs pilot plant and at the West Rand Consolidated Uranium plant, the major factor causing a decrease in the efficiency of the Ion exchange resins was the presence of certain chemical poisons in these pregnant solutions. [No abstract provided. Information taken from General Summary] / AC2017
258

Preparation of magnetic nano-composite-beads and their application to remediation of Cr(VI) and U(VI) from acid mine drainage

Tavengwa, Nikita Tawanda 07 August 2013 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science WITS University, Johannesburg, 2013 / Occurring parallel to the developments in imprinting technology are magnetic materials which are being applied increasingly in environmental remediation, medicine, biotechnology and many other fields. Combining the imprinting effects of the polymer and nano magnetic particles yields composite materials which are both selective to the template and magneto responsive for easy polymer removal from aqueous solutions. In this study, magnetic ion imprinted polymers with high recognition for uranyl ion (UO2 2+) in the presence of competing ions were synthesized by bulk and precipitation polymerizations. The uranyl template was removed from the magnetic polymer matric by 1M HCl and 1M NaHCO3 leachants to form cavities which were complimentary in shape and size to the template. Full characterization of the magnetite and magnetic polymers was achieved by use of the following characterization techniques: Raman spectroscopy (RS), Transmission electron microscopy (TEM), Energy dispersive spectrometry (EDS), Powder X-ray diffraction (PXRD) analysis, Brunauer, Emmett and Teller (BET) analysis, Ultraviolet visible (UV-vis) spectroscopy, Fourier-transform infrared (FTIR), Thermo-gravimetric analysis (TGA), Carbon, hydrogen, nitrogen and sulphur (CHNS) analysis, Diffuse reflectance spectroscopy (DRS) and Atomic force microscopy (AFM). Parameters which were optimized included sample pH, which gave an optimum value of 4. Magnetic IIP and NIP amounts which gave maximum adsorption capacities were found to be 50 mg for both of these adsorbents. The optimum contact time was found to be 45 minutes. The performance of all magnetic ion imprinted polymers (IIPs) was expectedly superior to that of the corresponding non imprinted polymers (NIPs) in all adsorption studies. The first rate constant (k1) and correlation coefficient (R2) values evaluated for the pseudo first order were found to be between 0.048-0.093 min-1 and 0.602-0.991 min-1, respectively. For the pseudo second order, second rate constant (k2) and correlation coefficient (R2) were found to be between 0.273- 0.678 and 0.9811-0.9992, respectively. The selectivity order observed was as follows: UO2 2+ > Fe3+ > Pb2+ > Ni2+ > Mg2+. The magnetic polymers selective to Cr(VI) were also synthesized and were leached with HCl to remove the template. The synthesized Cr(VI) magnetic polymers, the optimum pH obtained was 4 for both the magnetic IIP and the corresponding NIP. The amount of the adsorbent which gave the maximum adsorption was determined to be 20 and 65 mg for the magnetic IIP and NIP, respectively. A Cr(VI) concentration which was adsorbed maximally was from 5 mg L-1 which was therefore taken as the optimum. The maximum adsorption capacities for the magnetic polymers were 6.20 and 1.87 mg g-1 for the magnetic IIP and NIP, respectively. The optimum time for the adsorption of the Cr(VI) analyte was determined as 40 minutes. Investigation of the order of selectivity of anions followed the trend: Cr2O7 2- SO4 2- F- NO3- -.
259

Estudo da incorporação de urânio em ossos de ratos wistar e cães beagles, utilizando técnicas nucleares / Study of the incorporation of uranium in bones of Wistar rats and dogs BEAGLE, using nuclear techniques.

Guevara, María Victoria Manso 30 April 2002 (has links)
Grupos de ratos Wistar e cães Beagle foram submetidos a dietas com dopagem de urânio, iniciando-se no desmame do animal e prolongando-se até sua maturidade. O conteúdo de urânio em ossos foi determinado por duas técnicas nucleares: nêutron-fissão e análise por ativação neutrônica, obtendo-se microdistribuição e conteúdos totais, respectivamente. O conteúdo total de U em ossos de ratos, em função da quantidade ingerida (medida em ppm de U na ração), exigiu um comportamento tendendo à saturação para doses de urânio na vizinhança de 20 ppm, sendo verificado também ser este o limiar toxicológico do U em ratos. Observou-se uma alteração do regime de saturação para outro, linear crescente, em dosagens superiores a 20 ppm. Esta ocorrência foi discutida em termos de uma provável falência renal de origem toxicológica. A microdistribuição de U em seções transversais do colo femoral de Beagles mostrou que, contrariamente ao que ocorre em situações de ingestão aguda e única, esse radionuclídeo distribui-se igualmente tanto no córtex quanto na medula óssea. Vários \"hot spots\" de U foram observados na região próxima ao endósteo. Foi desenvolvido um modelo biocinético para descrever a acumulação do U em função do tempo, e esse modelo foi validado vis-a-vis dados obtidos neste trabalho com ossos de Beagles. Com isso obteve-se, por extrapolação, que a saturação óssea de U ocorreria num período igual ou superior a 8 anos. Doses internas e microdoses foram acumuladas para a região da medula óssea, e as possíveis consequências radiobiológicas foram discutidas, tomando-se como exemplo ilustrativo a recente questão do urânio depletado disperso, via operações militares, nas regiões do Golfo Pérsico e Balcans. / Groups of Wistar rats and Beagle dogs were submitted to uranium doped diets, starting in the post-weaning period and extending till maturity. The uranium content in bones was determined by means of two techniques: neutron-fission and neutron activation analysis, to obtain microdistributions and total contents, respectively. The total content of U in bones of Wistar rats, as a function of the ingested amount (measured in terms of ppm of U in the food), showed a trend toward saturation for U dosages around 20 ppm, which also represents the toxicological threshold of U in Wistar rats, as verified in this work. Is was also observed, at dosages higher than 20 ppm, a change of the saturation regime into another linearly increasing. This fact was discussed in terms of a possible toxicologically originated renal failure. The U microdistribution in transverse sections of Beagle femoral shafts, showed that this radionuclide is equally distributed all along the cortex and marrow, which is at variance with experimental situations of single and acute dosages. Several U hot spots were observed at locations near to the endosteo. Is was developed a biokinetical model to describe accumulation as a function of time, and this model was validated by a comparison with data for Beagle bones obtained in this work. We came to the conclusion, by extrapolation of the model, that the U saturation in bone would take place after a period equal or higher to 8 years. Internal and microdoses imparted to the central bone marrow were calculated, and the possible radiobiological consequences were discussed, where the recent issue of depleted uranium dispersed in the environment, by means of military operations in the Gulf and Balkans regions, was used as a working example.
260

Aplicação de nanotecnologia no meio ambiente: biossorvente magnético na remoção de urânio / Environmental nanotechnology application: magnetic biosorbent for uranium removal

Yamamura, Amanda Pongeluppe Gualberto 28 January 2009 (has links)
O bagaço de cana-de-açúcar é um resíduo proveniente da agroindústria da cana-de-açúcar. Trata-se de um material biodegradável, com baixo custo e apresenta afinidade por compostos orgânicos e metais tóxicos. Neste trabalho preparou-se o bagaço de cana-de-açúcar combinado com nanopartículas de magnetita, o qual foi chamado de biossorvente magnético. A magnetita foi sintetizada por precipitação simultânea adicionando-se uma solução de NaOH à solução aquosa contendo Fe2+ e Fe3+. O material foi caracterizado por microscopia eletrônica de varredura, espectrometria de infravermelho por transformada de Fourier, análise termogravimétrica, difratometria de raios-X e medidas de magnetização. O biossorvente magnético apresentou uma alta magnetização de saturação sem histerese, comportamentos atribuídos aos materiais superparamagnéticos. Estudaram-se as variáveis do processo de adsorção de íons uranilo pelo biossorvente magnético em meio nítrico. O estudo do tempo de equilíbrio indicou um aumento de adsorção em função do tempo. Verificou-se que quanto menor o tamanho do biossorvente, maior a porcentagem de remoção. A máxima remoção ocorreu em pH 5. O aumento da velocidade de agitação do sistema soluto mais biossorvente favoreceu a adsorção, sendo encontrado o equilíbrio a partir de 300 r.p.m. Verificou-se que o aumento da dose de biossorvente magnético aumentou a remoção até tornar-se constante a partir de 10 g.L-1. Estudou-se a isoterma de equilíbrio segundo os modelos de Langmuir e Freundlich. O modelo de isoterma de Langmuir correlacionou-se melhor aos dados experimentais. A capacidade máxima de adsorção encontrada foi de 17 mg de U por g de biossorvente. Os mesmos estudos de adsorção foram realizados com o biossorvente de bagaço a fim de comparar os resultados. / Sugarcane bagasse is a residue from the sugarcane agroindustry. It is a biodegradable material, with low cost and presents affinity for organic compounds and toxic metals. In this work, the sugar cane bagasse combined with nanoparticles of magnetite was prepared and called magnetic biosorbent. The magnetite was synthesized by simultaneous precipitation by addition a solution of NaOH to the aqueous solution containing Fe2+ and Fe3+. The material was characterized by scanning electron microscopy, Fourier Transformer Infrared Spectroscopy, thermogravimetric analysis, X-ray diffractometry and measurements of magnetization. The magnetic biosorbent showed a high magnetization of saturation without hysteresis, behavior attributed to superparamagnetic materials. Variables of adsorption process of uranyl ions by magnetic biosorbent in nitric solutions were investigated. The study of the equilibrium time indicated an increase in the adsorption in function of time. Smaller biosorbent particle sizes resulted in greater removals. The maximum removal occurred at pH 5. The increase of stirring speed of the solute plus biosorbent system favored the adsorption, reaching the equilibrium at 300 r.p.m. The increase of the biosorbent dosage increased the removal, which became constant for doses above of 10 g.L-1. The equilibrium isotherm was verified according to the Langmuir and Freundlich adsorption isotherm models. The results correlated better to the Langmuir isotherm model, being found a value of maximum capacity of adsorption of 17 mg of U per g biosorbent. The same studies of adsorption were performed with the bagasse biosorbent in order to compare the results.

Page generated in 0.0419 seconds