• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interação entre precipitação e recristalização em liga de urânio contendo nióbio e zircônio (Mulberry alloy). / Interaction between precipitation and recrystallization in alloy uranium containing niobium and zirconium (Mulberry alloy).

Lopes, Denise Adorno 10 December 2013 (has links)
No presente trabalho foram estudados os fenômenos de encruamento e, principalmente, transformação de fases, recuperação e recristalização, presentes na liga U-7,5Nb-2,5Zr (Mulberry alloy) e no urânio não ligado. Realizou-se a fusão da liga por dois métodos: plasma (menor massa) e indução (maior massa). A caracterização microestrutural das ligas resultantes nos estados bruto de fundição e homogeneizado (tratado termicamente na região da fase γ seguido de resfriamento rápido em água), assim como do urânio em seu estado inicial, foi realizada com auxílio de várias técnicas complementares de análise microestrutural. No estado gama estabilizado, a liga U-7,5Nb-2,5Zr foi deformada na temperatura ambiente por dois métodos: laminação a frio, dividida em vários estágios (20%, 50%, 60% e 80%), e limagem, sendo o pó resultante de alto grau de deformação. As amostras deformadas foram posteriormente recozidas em tratamentos isócronos (1 hora) e isotérmicos (200ºC, 450ºC e 700ºC). O urânio não ligado foi deformado em aproximadamente 60% e 80% de redução em espessura, e em seguida submetido a tratamentos isócronos (1 hora) e isotérmicos (400ºC e 650ºC). Os fenômenos de encruamento, recuperação, recristalização e transformação de fases foram estudados predominantemente por microscopia óptica, dureza e difração de raios X, com auxílio do método de Rietveld. Adicionalmente, técnicas de análise térmica (dilatometria e calorimetria diferencial) foram utilizadas para acompanhamento da cinética de transformação de fase e energia armazenada na deformação. Com relação à deformação, a liga U-7,5Nb-2,5Zr mostrou ser capaz de sofrer reduções da ordem de 70% na temperatura ambiente, sem necessidade de recozimentos intermediários e com um baixo grau de encruamento. Similarmente, o urânio não ligado mostrou ser capaz de sofrer graus de deformação mais altos na temperatura ambiente, entretanto, este material apresentou alto grau de encruamento e, mesmo após considerável grau de deformação, ainda apresentava muitas heterogeneidades de deformação, como bandas de deformação e maclas. Foi observado que a recristalização do urânio não ligado teve início a aproximadamente 454ºC. Para a liga no estado deformado e supersaturado, a precipitação de fases tende a ocorrer antes da recristalização. Assim, o comportamento desta liga sob aquecimento pós-deformação pode ser resumido da seguinte forma: ~200°C (Recuperação) ---> 300-575°C (Precipitação de fases) ---> 575°C (Recristalização). O rápido aquecimento para temperaturas acima de 650ºC, ou a manutenção desta temperatura por longos tempos, gera uma estrutura γ recristalizada com grãos equiaxiais. Uma estrutura de grãos finos (~8,3µm) foi obtida no recozimento a 700ºC/1h tanto para baixo como para alto grau de deformação. Uma taxa de aquecimento lenta, ou recozimento na faixa de 300-575ºC, gera precipitação da fase antes da recristalização. Consequentemente, a transformação eutetóide γ→α+γ₃ ocorre de modo a herdar a orientação do grão γ deformado, o que pode gerar uma textura de transformação. Na faixa de temperaturas de 575-650ºC ocorre a interação entre os fenômenos de precipitação de fase e recristalização. Em recozimentos a 200ºC foi possível observar a predominância da recuperação para graus de deformação intermediários (60%) e altos (80%), mas para grau de deformação baixo (20%) prevaleceu endurecimento por precipitação da fase α\'\'. Com auxílio da análise em um calorímetro diferencial (DSC) foi observado que a energia armazenada na deformação e liberada durante o processo de recristalização da liga U-7,5Nb-2,5Zr foi de 6,5J/g. Tal valor é relativamente alto se comparado aos metais comuns, o que leva à suposição de que uma linha de discordância no urânio representa uma maior energia. Este fato tem influência direta no processo recristalização. Este experimento demonstrou também que os fenômenos de precipitação de fase e recristalização interagem entre si, com relação à energia disponível para o processo. A textura da liga U-7,5Nb-2,5Zr foi estudada por difração de raios X (DRX) nas condições com fase γ estabilizada (obtida através de fusão, coquilhamento e homogeneização seguida de têmpera) e no estado deformado (laminado a temperatura ambiente). A liga na condição com γ estabilizado apresentou textura moderada com apenas as componentes (023) e (032). Após a deformação de 80%, o material apresentou uma textura de fibra (001)<uvw>, pouco comum nos metais CCC, além da fibra γ (111)<uvw>, com intensidade intermediária. / In this work it was studied the phenomena of work hardening, mainly phase transformation, recovery and recrystallization in the U-7.5Nb-2.5Zr alloy (Mulberry alloy) and unalloyed uranium. The alloy was melted by two methods: plasma (smaller mass) and induction (larger mass). Microstructural characterization of the samples in the as-cast and homogenized states (the last one was heat treated in the γ phase region and then quenched in water), as well as uranium in its initial state, was performed using several complementary techniques for microstructural analysis. In the gamma stabilized state, the U-7.5Nb2.5Zr alloy was deformed at room temperature by two methods: cold rolling in several stages (20%, 50%, 60% and 80%), and then filed, resulting in a powder with high degree of deformation. Deformed samples were subsequently annealed by isochronal (1 hour) and isothermal (200°C, 450°C, 700°C) treatments. Unalloyed uranium was deformed by approximately 60% and 80% reduction in thickness, and then subjected to isochronous (1 hour) and isothermal (400°C and 650°C) treatments. The phenomena of work hardening, recovery, recrystallization and phase transformation were studied by optical microscopy, hardness testing and X-ray diffraction, using the Rietveld method. Additionally, thermal analysis techniques (differential calorimetry and dilatometry) were used to measure the kinetics of phase transformation and energy stored during deformation. With regard to deformation, the U-7.5Nb-2.5Zr alloy was reduced of approximately 70% at room temperature without intermediate annealing and with a low degree of work hardening. Similarly, unalloyed uranium was reduced of high degrees of deformation at room temperature. However, this sample showed a higher degree of work hardening, and even after significant deformation still showed lots of inhomogeneities of deformation, such as deformation bands and twins. It was observed that recrystallization of unalloyed uranium started at about 454°C. For the alloy in the supersaturated and deformed states, the phase precipitation tends to occur before recrystallization. Thus, the behavior of this alloy under heat treatments after deformation can be summarized as follows: ~200°C (Recovery) ---> 300-575°C (Phase precipitation) ---> 575°C (Recrystallization). Rapid heating to temperatures above 650°C, or maintain this temperature for a long time, generates a γ recrystallized structure with equiaxed grains. Fine grain structure (~8.3 µm) was obtained for annealing at 700°C/1 h for both lower and higher deformation degrees. Slow heating rate or annealing treatment in the range of 300 to 575ºC, causes precipitation before recrystallization. Consequently, the eutectoid transformation γ→α+γ₃ occurs in order to inherit orientation from the γ deformed grain, which may generate a transformation texture. The interaction between the phenomena of phase precipitation and recrystallization was observed in the temperature range of 575-650°C. At the annealing temperature of 200°C it was possible to observe the predominance of recovery at intermediate (60%) and higher (80%) degrees of deformation, while at lower deformation degree (20%) α phase precipitation hardening has predominated. The results obtained using a differential calorimeter (DSC) showed that the energy stored during deformation and released during the recrystallization of the U-7.5Nb-2.5Zr alloy was 6.5 J/g. That value is relatively high compared to common metals, which leads to the conclusion that dislocation lines in uranium alloys possess higher energy. This fact has a direct influence in the recrystallization process. This experiment also demonstrated that the phenomena of phase precipitation and recrystallization interact with each other with regard to energy available for the process. The texture of the U-7.5Nb-2.5Zr alloy was studied by X-ray diffraction (XRD) in the γ-phase stabilized condition (obtained by melting, casting, homogenization and then quenching) and in deformed state (rolled at room temperature). The first condition generated moderate texture with the components (023) e (032). After 80% of deformation, the samples showed a fiber texture (001)<uvw>, uncommon in the BCC metals, as well the γ fiber (111)<uvw> with intermediate intensity.
2

Characterization of Thermal Properties of Depleted Uranium Metal Microspheres

Humrickhouse, Carissa Joy 2012 May 1900 (has links)
Nuclear fuel comes in many forms; oxide fuel is the most commonly used in current reactor systems while metal fuel is a promising fuel type for future reactors due to neutronic performance and increased thermal conductivity. As a key heat transfer parameter, thermal conductivity describes the heat transport properties of a material based upon the density, specific heat, and thermal diffusivity. A material’s ability to transport thermal energy through its structure is a measurable property known as thermal diffusivity; the units for thermal diffusivity are given in area per unit time (e.g., m2/s). Current measurement methods for thermal diffusivity include LASER (or light) Flash Analysis and the hot-wire method. This study examines an approach that combines these previous two methods to characterize the diffusivity of a packed bed of microspheres of depleted uranium (DU) metal, which have a nominal diameter of 250 micrometers. The new apparatus is designated as the Crucible Heater Test Assembly (CHTA), and it induces a radial transient across a packed sample of microspheres then monitors the temperature profile using an array of thermocouples located at different distances from the source of the thermal transient. From the thermocouple data and an accurate time log, the thermal diffusivity of the sample may be calculated. Results indicate that DU microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer. At 500°C, the thermal conductivity of the DU microspheres was 0.431 ± 13% W/m-K compared to approximately 32 W/m-K for solid uranium metal. Characterization of the developed apparatus revealed a method that may be useful for measuring the thermal diffusivity of powders and liquids.
3

Interação entre precipitação e recristalização em liga de urânio contendo nióbio e zircônio (Mulberry alloy). / Interaction between precipitation and recrystallization in alloy uranium containing niobium and zirconium (Mulberry alloy).

Denise Adorno Lopes 10 December 2013 (has links)
No presente trabalho foram estudados os fenômenos de encruamento e, principalmente, transformação de fases, recuperação e recristalização, presentes na liga U-7,5Nb-2,5Zr (Mulberry alloy) e no urânio não ligado. Realizou-se a fusão da liga por dois métodos: plasma (menor massa) e indução (maior massa). A caracterização microestrutural das ligas resultantes nos estados bruto de fundição e homogeneizado (tratado termicamente na região da fase γ seguido de resfriamento rápido em água), assim como do urânio em seu estado inicial, foi realizada com auxílio de várias técnicas complementares de análise microestrutural. No estado gama estabilizado, a liga U-7,5Nb-2,5Zr foi deformada na temperatura ambiente por dois métodos: laminação a frio, dividida em vários estágios (20%, 50%, 60% e 80%), e limagem, sendo o pó resultante de alto grau de deformação. As amostras deformadas foram posteriormente recozidas em tratamentos isócronos (1 hora) e isotérmicos (200ºC, 450ºC e 700ºC). O urânio não ligado foi deformado em aproximadamente 60% e 80% de redução em espessura, e em seguida submetido a tratamentos isócronos (1 hora) e isotérmicos (400ºC e 650ºC). Os fenômenos de encruamento, recuperação, recristalização e transformação de fases foram estudados predominantemente por microscopia óptica, dureza e difração de raios X, com auxílio do método de Rietveld. Adicionalmente, técnicas de análise térmica (dilatometria e calorimetria diferencial) foram utilizadas para acompanhamento da cinética de transformação de fase e energia armazenada na deformação. Com relação à deformação, a liga U-7,5Nb-2,5Zr mostrou ser capaz de sofrer reduções da ordem de 70% na temperatura ambiente, sem necessidade de recozimentos intermediários e com um baixo grau de encruamento. Similarmente, o urânio não ligado mostrou ser capaz de sofrer graus de deformação mais altos na temperatura ambiente, entretanto, este material apresentou alto grau de encruamento e, mesmo após considerável grau de deformação, ainda apresentava muitas heterogeneidades de deformação, como bandas de deformação e maclas. Foi observado que a recristalização do urânio não ligado teve início a aproximadamente 454ºC. Para a liga no estado deformado e supersaturado, a precipitação de fases tende a ocorrer antes da recristalização. Assim, o comportamento desta liga sob aquecimento pós-deformação pode ser resumido da seguinte forma: ~200°C (Recuperação) ---> 300-575°C (Precipitação de fases) ---> 575°C (Recristalização). O rápido aquecimento para temperaturas acima de 650ºC, ou a manutenção desta temperatura por longos tempos, gera uma estrutura γ recristalizada com grãos equiaxiais. Uma estrutura de grãos finos (~8,3µm) foi obtida no recozimento a 700ºC/1h tanto para baixo como para alto grau de deformação. Uma taxa de aquecimento lenta, ou recozimento na faixa de 300-575ºC, gera precipitação da fase antes da recristalização. Consequentemente, a transformação eutetóide γ→α+γ₃ ocorre de modo a herdar a orientação do grão γ deformado, o que pode gerar uma textura de transformação. Na faixa de temperaturas de 575-650ºC ocorre a interação entre os fenômenos de precipitação de fase e recristalização. Em recozimentos a 200ºC foi possível observar a predominância da recuperação para graus de deformação intermediários (60%) e altos (80%), mas para grau de deformação baixo (20%) prevaleceu endurecimento por precipitação da fase α\'\'. Com auxílio da análise em um calorímetro diferencial (DSC) foi observado que a energia armazenada na deformação e liberada durante o processo de recristalização da liga U-7,5Nb-2,5Zr foi de 6,5J/g. Tal valor é relativamente alto se comparado aos metais comuns, o que leva à suposição de que uma linha de discordância no urânio representa uma maior energia. Este fato tem influência direta no processo recristalização. Este experimento demonstrou também que os fenômenos de precipitação de fase e recristalização interagem entre si, com relação à energia disponível para o processo. A textura da liga U-7,5Nb-2,5Zr foi estudada por difração de raios X (DRX) nas condições com fase γ estabilizada (obtida através de fusão, coquilhamento e homogeneização seguida de têmpera) e no estado deformado (laminado a temperatura ambiente). A liga na condição com γ estabilizado apresentou textura moderada com apenas as componentes (023) e (032). Após a deformação de 80%, o material apresentou uma textura de fibra (001)<uvw>, pouco comum nos metais CCC, além da fibra γ (111)<uvw>, com intensidade intermediária. / In this work it was studied the phenomena of work hardening, mainly phase transformation, recovery and recrystallization in the U-7.5Nb-2.5Zr alloy (Mulberry alloy) and unalloyed uranium. The alloy was melted by two methods: plasma (smaller mass) and induction (larger mass). Microstructural characterization of the samples in the as-cast and homogenized states (the last one was heat treated in the γ phase region and then quenched in water), as well as uranium in its initial state, was performed using several complementary techniques for microstructural analysis. In the gamma stabilized state, the U-7.5Nb2.5Zr alloy was deformed at room temperature by two methods: cold rolling in several stages (20%, 50%, 60% and 80%), and then filed, resulting in a powder with high degree of deformation. Deformed samples were subsequently annealed by isochronal (1 hour) and isothermal (200°C, 450°C, 700°C) treatments. Unalloyed uranium was deformed by approximately 60% and 80% reduction in thickness, and then subjected to isochronous (1 hour) and isothermal (400°C and 650°C) treatments. The phenomena of work hardening, recovery, recrystallization and phase transformation were studied by optical microscopy, hardness testing and X-ray diffraction, using the Rietveld method. Additionally, thermal analysis techniques (differential calorimetry and dilatometry) were used to measure the kinetics of phase transformation and energy stored during deformation. With regard to deformation, the U-7.5Nb-2.5Zr alloy was reduced of approximately 70% at room temperature without intermediate annealing and with a low degree of work hardening. Similarly, unalloyed uranium was reduced of high degrees of deformation at room temperature. However, this sample showed a higher degree of work hardening, and even after significant deformation still showed lots of inhomogeneities of deformation, such as deformation bands and twins. It was observed that recrystallization of unalloyed uranium started at about 454°C. For the alloy in the supersaturated and deformed states, the phase precipitation tends to occur before recrystallization. Thus, the behavior of this alloy under heat treatments after deformation can be summarized as follows: ~200°C (Recovery) ---> 300-575°C (Phase precipitation) ---> 575°C (Recrystallization). Rapid heating to temperatures above 650°C, or maintain this temperature for a long time, generates a γ recrystallized structure with equiaxed grains. Fine grain structure (~8.3 µm) was obtained for annealing at 700°C/1 h for both lower and higher deformation degrees. Slow heating rate or annealing treatment in the range of 300 to 575ºC, causes precipitation before recrystallization. Consequently, the eutectoid transformation γ→α+γ₃ occurs in order to inherit orientation from the γ deformed grain, which may generate a transformation texture. The interaction between the phenomena of phase precipitation and recrystallization was observed in the temperature range of 575-650°C. At the annealing temperature of 200°C it was possible to observe the predominance of recovery at intermediate (60%) and higher (80%) degrees of deformation, while at lower deformation degree (20%) α phase precipitation hardening has predominated. The results obtained using a differential calorimeter (DSC) showed that the energy stored during deformation and released during the recrystallization of the U-7.5Nb-2.5Zr alloy was 6.5 J/g. That value is relatively high compared to common metals, which leads to the conclusion that dislocation lines in uranium alloys possess higher energy. This fact has a direct influence in the recrystallization process. This experiment also demonstrated that the phenomena of phase precipitation and recrystallization interact with each other with regard to energy available for the process. The texture of the U-7.5Nb-2.5Zr alloy was studied by X-ray diffraction (XRD) in the γ-phase stabilized condition (obtained by melting, casting, homogenization and then quenching) and in deformed state (rolled at room temperature). The first condition generated moderate texture with the components (023) e (032). After 80% of deformation, the samples showed a fiber texture (001)<uvw>, uncommon in the BCC metals, as well the γ fiber (111)<uvw> with intermediate intensity.

Page generated in 0.0794 seconds