• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluating the Impact and Distribution of Stormwater Green Infrastructure on Watershed Outflow

Fahy, Benjamin 02 January 2019 (has links)
Green Stormwater Infrastructure (GSI) has become a popular method for flood mitigation as it can prevent runoff from entering streams during heavy precipitation. In this study, a recently developed neighborhood in Gresham, Oregon hosts a comparison of various GSI projects on runoff dynamics. The study site includes dispersed GSI (rain gardens, retention chambers, green streets) and centralized GSI (bioswales, detention ponds, detention pipes). For the 2017-2018 water year, hourly rainfall and observed discharge data is used to calibrate the EPA's Stormwater Management Model to simulate rainfall-runoff dynamics, achieving a Nash-Sutcliffe efficiency of 0.75 and Probability Bias statistic of 3.3%. A synthetic scenario analysis quantifies the impact of the study site GSI and compares dispersed and centralized arrangements. Each test was performed under four precipitation scenarios (of differing intensity and duration) for four metrics: runoff ratio, peak discharge, lag time, and flashiness. Design structure has significant impacts, reducing runoff ratio 10 to 20%, reducing peak discharge 26 to 68%, and reducing flashiness index 56 to 70%. There was a reverse impact on lag time, increasing it to 50 to 80%. Distributed GSI outperform centralized structures for all metrics, reducing runoff ratio 22 to 32%, reducing peak discharge 67 to 69%, increasing lag time 133 to 500%, and reducing flashiness index between 32 and 62%. This research serves as a basis for researchers and stormwater managers to understand potential impact of GSI on reducing runoff and downstream flooding in small urban watersheds with frequent rain.
2

Modeling urban stormwater disposal systems for their future management and design

Stovold, Matthew R January 2007 (has links)
[Truncated abstract]This thesis investigates aspects of urban stormwater modeling and uses a small urban catchment (NE38) located in the suburb of Nedlands in Perth, Western Australia to do so. The MUSIC (Model for Urban Stormwater Improvement Conceptualisation) model was used to calibrate catchment NE38 using measured stormwater flows and rainfall data from within the catchment. MUSIC is a conceptual model designed to model stormwater flows within urban environments and uses a rainfall-runoff model adapted to generate results at six minute time steps. Various catchment scenarios, including the use of porous asphalt as an alternative road surface, were applied to the calibrated model to identify effective working stormwater disposal systems that differ from the current system. Calibrating catchment NE38 using the MUSIC model was attempted and this involved matching modeled stormwater flows to stormwater flows measured at the catchment drainage point. This was achieved by measuring runoff contributing areas (roads) together with rainfall data measured from within the catchment and altering the seepage constant parameter for all roadside infiltration sumps. ... The MUSIC model generated future scenario outcomes for alternative stormwater disposal systems that displayed similar or improved levels of performance with respect to the current system. The following scenarios listed in increasing order of effectiveness outline future stormwater disposal systems that may be considered in future urban design. 1. 35% porous asphalt application with no sumps in 2036 2. 35% porous asphalt application with no sumps in 2064 3. 68% porous asphalt application with no sumps in 2036 4. 68% porous asphalt application with no sumps in 2064. Future scenarios using the current stormwater disposal system (with roadside infiltration sumps) with porous asphalt were also run. These scenarios reduced stormwater runoff and contaminant loading on the catchment drainage point however the inclusion of a roadside infiltration sump system may not appeal to urban designers due to the costs involved with this scenario. Climate change will affect the design of future stormwater disposal systems and thus, the design of these systems must consider a rainfall reducing future. Based on the findings of this thesis, current stormwater runoff volumes entering catchment drainage points can be reduced together with contaminant loads in urban environments that incorporate porous asphalt with a stormwater disposal design system that is exclusive of roadside infiltration sumps.

Page generated in 0.1182 seconds