• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

User Equilibrium in a Disrupted Network with Real-Time Information and Heterogeneous Risk Attitude

Pothering, Ryan J 01 January 2012 (has links) (PDF)
The traffic network is subject to random disruptions, such as incidents, bad weather, or other drivers’ random behavior. A traveler’s route choice behavior in such a network is thus affected by the probabilities of such disruptions, his/her attitude towards risk, and real-time information on revealed traffic conditions that could potentially reduce the level of uncertainty due to the disruptions. As the road network’s performance is de-termined collectively by all travelers’ choices, it is also affected by these factors. This thesis features the development of a multi-class user equilibrium model based on hetero-geneous risk attitude distributions and a user equilibrium model based on various disrup-tion probabilities and information penetration rates that can be used to perform sensitivity analyses for a traffic network. The method of successive average (MSA) is used to solve for the equilibrium conditions. Laboratory experimental data are used to calibrate the risk attitude model. A sample sensitivity analysis is performed to show the disruption and in-formation penetration effects on network performance. Initial calibrations show promis-ing results for route flow predictions in a congested network with respect to heterogene-ous attitude. With respect to disruption probability and information access, having too v high information penetration will not improve the network’s performance, while having a small disruption probability can improve traffic conditions in the network

Page generated in 0.06 seconds