• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrafast acoustics in hybrid and magnetic structures / Acoustique ultra-rapide dans les couches magnétiques hybrides

Shalagatskyi, Viktor 30 October 2015 (has links)
L’objectif de cette thèse est de comprendre la dynamique des excitations électroniques, thermiques et acoustiques dans une structure hybride composée d’un film métallique noble et d’un film ferromagnétique. L’analyse des processus est possible grâce à l’excitation d’un film métallique par une impulsion laser ultra brève qui génère des impulsions acoustiques. L’étude s’appuie sur la technique femtoseconde pompe-sonde et les simulations numériques. Beaucoup de processus intéressants comme l’excitation des électrons chauds et génération des impulsions acoustiques peuvent être étudiés. Le fait de mieux comprendre le mécanisme de ces processus amène à la possibilité de contrôler les propriétésélectroniques, mécaniques et magnétiques des matériaux. Cela permettra d’introduire des concepts innovants pour des nouveaux dispositifs ou d’optimiser la performance des dispositifs qui existent déjà. Le point de départ de ce travail est l’observation expérimentale d’impulsions acoustiques de durée très courte (2 ps) générées dans un film de cobalt de 30nm via excitation d’un film d’or (de 50 nm jusqu’à 500 nm). Le processus majeur en jeu est le transport ultrarapide de l’énergie par les électrons super diffusifs à travers la couche d’or. Pour étudier le transport diffusive des électrons on utilise le modèle à Deux Températures. Ce nouveau concept a été confirmé par des mesures magnétiques : excitation de la précession de la magnétisation par les électrons super diffusifs. De plus, notre analyse des courbes de réflectivité amontré la possibilité de retrouver la résistance aux l’interfaces (résistance de Kapitza) pour les interfaces métal- diélectrique et métal-métal. / This thesis aims to understand the ultrafast dynamics of electronic, thermal and acoustic excitations in noble metal -ferromagnet multilayer structures. We start from the initial stage of ultrafast laser excitation up to the detection of thegenerated picosecond acoustic pulses by using the femtosecond pump-probe technique and numerical simulations. Various interesting transient physical processes are taking place on intermediate timescales. Understanding and explaining their mechanisms leads to the possibility of controlling electronic, mechanical and magnetic properties of materials. Thus, it becomes possible to introduce innovative concepts of new devices and optimize the performances for already existingtechnologies. The starting point of this work is the experimental observation by reflectivity measurements of 2-ps acousticpulses generated in a 30 nm thin cobalt layer when the ultrashort laser pulse excites a much thicker gold overlayer of varying thicknesses from 50 to 500 nm. If we take into account the fact that the optical energy deposition by a visible light in gold is limited by a tiny (~10nm) skin depth, the only reasonable explanation of the acoustic strain generation in adjacent cobalt layer can be provided by considering ultrafast energy transport by super-diffusive hot electrons through the gold layer. The hot electron diffusion is studied within the Two Temperature Model. This novel concept was corroborated by complementarymeasurements of magnetization precession in cobalt induced by hot electrons initially generated in gold. In our analysis we were able to fit both thermal and acoustic components of transient reflectivity measurements and retrieve the values of the Kapitza resistances at the metal-metal and metal-dielectric interfaces.
2

High speed mask-less laser-controlled precision micro-additive manufacture

Ten, Jyi Sheuan January 2019 (has links)
A rapid, mask-less deposition technique for writing metal tracks has been developed. The technique was based on laser-induced chemical vapour deposition. The novelty in the technique was the usage of pulsed ultrafast lasers instead of continuous wave lasers in pyrolytic dissociation of the chemical precursor. The motivation of the study was that (1) ultrafast laser pulses have smaller heat affected zones thus the deposition resolution would be higher, (2) the ultrashort pulses are absorbed in most materials (including those transparent to the continuous wave light at the same wavelength) thus the deposition would be compatible with a large range of materials, and (3) the development of higher frequency repetition rate ultrafast lasers would enable higher deposition rates. A deposition system was set-up for the study to investigate the ultrafast laser deposition of tungsten from tungsten hexacarbonyl chemical vapour precursors. A 405 nm laser diode was used for continuous wave deposition experiments that were optimized to achieve the lowest track resistivity. These results were used for comparison with the ultrafast laser track deposition. The usage of the 405 nm laser diode was itself novel and beneficial due to the low capital and running cost, high wall plug efficiency, high device lifetime, and shallower optical penetration depth in silicon substrates compared to green argon ion lasers which were commonly used by other investigators. The lowest as-deposited track resistivity achieved in the continuous wave laser experiments on silicon dioxide coated silicon was 93±27 µΩ cm (16.6 times bulk tungsten resistivity). This deposition was done with a laser output power of 350 mW, scan speed of 10 µm/s, deposition pressure of 0.5 mBar, substrate temperature of 100 °C and laser spot size of approximately 7 µm. The laser power, scan speed, deposition pressure and substrate temperature were all optimized in this study. By annealing the deposited track with hydrogen at 650 °C for 30 mins, removal of the deposition outside the laser spot was achieved and the overall track resistivity dropped to 66±7 µΩ cm (11.7 times bulk tungsten resistivity). For ultrafast laser deposition of tungsten, spot dwell experiments showed that a thin film of tungsten was first deposited followed by quasi-periodic structures perpendicular to the linear polarization of the laser beam. The wavelength of the periodic structures was approximately half the laser wavelength (λ/2) and was thought to be formed due to interference between the incident laser and scattered surface waves similar to that in laser-induced surface periodic structures. Deposition of the quasi-periodic structures was possible on stainless steel, silicon dioxide coated silicon wafers, borosilicate glass and polyimide films. The thin-films were deposited when the laser was scanned at higher laser speeds such that the number of pulses per spot was lower (η≤11,000) and using a larger focal spot diameter of 33 µm. The lowest track resistivity for the thin-film tracks on silicon dioxide coated silicon wafers was 37±4 µΩ cm (6.7 times bulk tungsten resistivity). This value was achieved without post-deposition annealing and was lower than the annealed track deposited using the continuous wave laser. The ultrafast tungsten thin-film direct write technique was tested for writing metal contacts to single layer graphene on silicon dioxide coated silicon substrates. Without the precursor, the exposure of the graphene to the laser at the deposition parameters damaged the graphene without removing it. This was evidenced by the increase in the Raman D peak of the exposed graphene compared to pristine. The damage threshold was estimated to be 53±7 mJ/cm2 for a scanning speed of 500 µm/s. The deposition threshold of thin-film tungsten on graphene at that speed was lower at 38±8 mJ/cm2. However, no graphene was found when the deposited thin-film tungsten was dissolved in 30 wt% H2O2 that was tested to have no effect on the graphene for the dissolution time of one hour. The graphene likely reacted with the deposited tungsten to form tungsten carbide which was reported to dissolve in H2O2. Tungsten carbide was also found on the tungsten tracks deposited on reduced graphene oxide samples. The contact resistance between tungsten and graphene was measured by both transfer length and four-point probe method with an average value of 4.3±0.4 kΩ µm. This value was higher than reported values using noble metals such as palladium (2.8±0.4 kΩ µm), but lower than reported values using other metals that creates carbides such as nickel (9.3±1.0 kΩ µm). This study opened many potential paths for future work. The main issue to address in the tungsten ultrafast deposition was the deposition outside the laser spot. This prevented uniform deposition in successive tracks close to one another. The ultrafast deposition technique also needs verification using other precursors to understand the precursor requirements for this process. An interesting future study would be a combination with a sulphur source for the direct write of tungsten disulphide, a transition metal dichalcogenide that has a two-dimensional structure similar to graphene. This material has a bandgap and is sought after for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. Initial tests using sulphur micro-flakes on silicon and stainless-steel substrates exposed to the tungsten precursor and ultrafast laser pulses produced multilayer tungsten disulphide as verified in Raman measurements.

Page generated in 0.0312 seconds