• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data mining of temporal sequences for the prediction of infrequent failure events : application on floating train data for predictive maintenance / Fouille de séquences temporelles pour la maintenance prédictive : application aux données de véhicules traceurs ferroviaires

Sammouri, Wissam 20 June 2014 (has links)
De nos jours, afin de répondre aux exigences économiques et sociales, les systèmes de transport ferroviaire ont la nécessité d'être exploités avec un haut niveau de sécurité et de fiabilité. On constate notamment un besoin croissant en termes d'outils de surveillance et d'aide à la maintenance de manière à anticiper les défaillances des composants du matériel roulant ferroviaire. Pour mettre au point de tels outils, les trains commerciaux sont équipés de capteurs intelligents envoyant des informations en temps réel sur l'état de divers sous-systèmes. Ces informations se présentent sous la forme de longues séquences temporelles constituées d'une succession d'événements. Le développement d'outils d'analyse automatique de ces séquences permettra d'identifier des associations significatives entre événements dans un but de prédiction d'événement signant l'apparition de défaillance grave. Cette thèse aborde la problématique de la fouille de séquences temporelles pour la prédiction d'événements rares et s'inscrit dans un contexte global de développement d'outils d'aide à la décision. Nous visons à étudier et développer diverses méthodes pour découvrir les règles d'association entre événements d'une part et à construire des modèles de classification d'autre part. Ces règles et/ou ces classifieurs peuvent ensuite être exploités pour analyser en ligne un flux d'événements entrants dans le but de prédire l'apparition d'événements cibles correspondant à des défaillances. Deux méthodologies sont considérées dans ce travail de thèse: La première est basée sur la recherche des règles d'association, qui est une approche temporelle et une approche à base de reconnaissance de formes. Les principaux défis auxquels est confronté ce travail sont principalement liés à la rareté des événements cibles à prédire, la redondance importante de certains événements et à la présence très fréquente de "bursts". Les résultats obtenus sur des données réelles recueillies par des capteurs embarqués sur une flotte de trains commerciaux permettent de mettre en évidence l'efficacité des approches proposées / In order to meet the mounting social and economic demands, railway operators and manufacturers are striving for a longer availability and a better reliability of railway transportation systems. Commercial trains are being equipped with state-of-the-art onboard intelligent sensors monitoring various subsystems all over the train. These sensors provide real-time flow of data, called floating train data, consisting of georeferenced events, along with their spatial and temporal coordinates. Once ordered with respect to time, these events can be considered as long temporal sequences which can be mined for possible relationships. This has created a neccessity for sequential data mining techniques in order to derive meaningful associations rules or classification models from these data. Once discovered, these rules and models can then be used to perform an on-line analysis of the incoming event stream in order to predict the occurrence of target events, i.e, severe failures that require immediate corrective maintenance actions. The work in this thesis tackles the above mentioned data mining task. We aim to investigate and develop various methodologies to discover association rules and classification models which can help predict rare tilt and traction failures in sequences using past events that are less critical. The investigated techniques constitute two major axes: Association analysis, which is temporal and Classification techniques, which is not temporal. The main challenges confronting the data mining task and increasing its complexity are mainly the rarity of the target events to be predicted in addition to the heavy redundancy of some events and the frequent occurrence of data bursts. The results obtained on real datasets collected from a fleet of trains allows to highlight the effectiveness of the approaches and methodologies used

Page generated in 0.0994 seconds