• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De la cellule au primate, propagation physiopathologique de la protéine Tau / From cells to primates, pathophysiological propagation of Tau proteins

Dujardin, Simon 21 September 2015 (has links)
Tau est une protéine stabilisatrice des microtubules majoritairement exprimée au niveau neuronal qui existe en six isoformes différentes appelées isoformes 3R ou 4R en fonction de l’inclusion de 3 ou 4 séquences répétées dans leur domaine de liaison aux microtubules. Dans une vingtaine de pathologies neurodégénératives appelées tauopathies, des protéines Tau anormalement modifiées s’agrègent formant des lésions intracellulaires appelées dégénérescence neurofibrillaire (DNF). Selon les tauopathies, la morphologie des lésions, leur composition en isoformes ainsi que l’évolution spatio-temporelle de la pathologie diffèrent. Dans la plupart des cas, les tauopathies sont sporadiques mais quelques mutations du gène codant Tau (MAPT) causent des formes familiales de démences fronto-temporales. Dans certaines tauopathies sporadiques comme la maladie d’Alzheimer, la DNF est initiée dans des régions spécifiques et évolue ensuite de manière stéréotypée. Ces stades neuropathologiques sont bien définis, mais les mécanismes expliquant cette évolution restent méconnus. Récemment, certaines études ont proposé que des espèces pathologiques de la protéine Tau sont capables de se déplacer activement de région en région suivant des connections neuro-anatomiques propageant ainsi la pathologie Tau dans le cerveau.Dans ce contexte, nous avons démontré à la fois in vitro, en utilisant un système de chambre microfluidique mais également in vivo dans un nouveau modèle de rat, que la protéine Tau est activement et physiologiquement transférée de cellule en cellule. De manière intéressante, la pathologie Tau qui se développe dans l’hippocampe des rats se propage également de région en région. Ce modèle étant basé sur une technologie de vectorisation virale, nous avons pu tester différentes constructions pour montrer qu’étonnamment, la pathologie Tau induite par des espèces mutées ou des isoformes 3R est restreinte autour du site d’initiation et ne propage pas aussi loin que pour les espèces sauvages 4R. La protéine Tau ainsi que la DNF se propagent donc de cellules en cellules mais les mécanismes expliquant cette propagation restent inconnus. Pour aborder cette question, et connaissant l’importance des vésicules extracellulaires (EVs) dans les mécanismes de communication intercellulaire, nous avons analysé leur implication dans le transfert de la protéine Tau. Nous avons purifié des EVs in vitro depuis des surnageants de culture mais également in vivo depuis des échantillons de liquide céphalorachidien de primates ainsi que des échantillons de fluide interstitiel cérébral de rat. Nous avons ainsi démontré que la protéine Tau est sécrétée de manière physiologique sous forme libre mais également au sein de EVs issues du bourgeonnement de la membrane plasmique nommées ectosomes. Il apparaît aussi qu’en cas de surexpression ou de présence de DNF, la protéine Tau est retrouvée dans des exosomes, des EVs issues de la voie endosomes/lysosomes.Ces résultats nous montrent que la protéine Tau se propage de neurone en neurone physiologiquement mais aussi durant des processus pathologiques. Il semble aussi exister des espèces particulières de protéine Tau plus promptes à se propager que d’autres. Ces différences pourraient en partie expliquer les différents phénotypes observés au sein des tauopathies. Nous avons aussi démontré que la protéine Tau est sécrétée via plusieurs voies de sécrétions qui pourraient refléter différents stades physiopathologiques. Des études complémentaires sont nécessaires notamment pour 1-clairement identifier les mécanismes de sortie et d’entrée de Tau dans les neurones. 2-comprendre si certaines espèces vont spécifiquement induire la pathologie dans les neurones secondaires et s’il est possible de les bloquer grâce à des thérapies ciblées. Et 3-identifier les raisons qui expliquent les vulnérabilités de certaines populations cellulaires. / Tau is a microtubule-associated protein mainly expressed in neurons. There are six different isoforms of this protein bearing either 3 or 4 microtubule-binding domains and called 3R-Tau or 4R-Tau. During the course of tauopathies, Tau proteins are abnormally modified and aggregate in specific intracellular lesions called neurofibrillary degeneration (NFD). According to tauopathies, the morphology of lesions, their isoforms’ composition and the spatiotemporal evolution of the pathology are different. Moreover, tauopathies are mostly sporadic but some mutations on Tau gene (MAPT) induce rare forms of familial fronto-temporal dementia. In some sporadic tauopathies like Alzheimer’s disease, the NFD is initiated in specific brain areas and evolves stereotypically in well-defined neuropathological stages. The mechanisms underlying such evolutions are mainly unknown but recently, different studies had proposed that some pathological species of Tau protein are able to actively move from region-to-region following neuro-anatomical connections and to spread the Tau pathology intra-cerebrally by this way.Within this context, we have demonstrated either in vitro using a microfluidic chamber system or in vivo using a new rat model, that Tau proteins are actively and physiologically transferred from cell-to-cell. Interestingly, in this model we could also follow the development of the Tau pathology inside the rats’ hippocampus but also its propagation from region-to-region. This model is based on a viral vector technology; therefore, we were able to test different construct and to show that surprisingly, Tau pathology induced by mutated or 3R-Tau species is restricted to the vicinity of the initiation site and do not propagate as far as the wild-type 4R-Tau species.Tau proteins as well as NFD are cell-to-cell propagating but the mechanisms underlying this phenomenon are still unknown. In order to address this point and knowing the significance of extracellular vesicles (EVs) in the intercellular communication mechanisms, we analysed their implication in the transfer of Tau proteins. We purified EVs in vitro from culture supernatants but also in vivo from primates’ cerebrospinal fluid samples and rats’ cerebral interstitial fluid samples. We demonstrated that Tau proteins are secreted physiologically in a free form but also within specific EVs named ectosomes and coming from a budding of the plasma membrane. Also, it seems that when Tau is overexpressed and when NFD is present, Tau proteins are retrieved within EVs named exosomes and derived from the endosomes/lysosomes pathway.These results clearly show that Tau proteins are propagating from neuron to neuron physiologically but also during pathological processes. It seems also that some specific Tau species are more prone to propagate than others. These differences could partly contribute to the different phenotypes observed among tauopathies. We have also demonstrated that Tau proteins are secreted via several pathways of secretion that could reflect different pathophysiological stages. Some complementary studies are needed particularly to 1- clearly identify the cellular mechanisms of Tau exit and entry. 2- to understand if some Tau species will specifically induce Tau pathology in secondary neurons and if it is possible to block this phenomenon thanks to targeted therapy. And 3- to identify the reasons that explain the vulnerability of some specific cell populations to Tau pathology propagation.
2

Rôle des vésicules extracellulaires sécrétées par les adipocytes dans la progression du mélanome : impact de l'obésité / Role of extracellular vesicles secreted by adipocytes in melanoma progression : impact of obedity

Clement, Emily 13 December 2018 (has links)
La progression tumorale dépend d'un dialogue entre les cellules cancéreuses et leur environnement. Parmi les cellules du microenvironnement du mélanome, les adipocytes ont longtemps été ignorés. Pourtant, ces cellules sont le composant majeur de l'hypoderme, la couche la plus profonde de la peau. Ainsi, elles sont proches du mélanome lors de la tumorigenèse et, lorsque la tumeur envahi les couches profondes de la peau, les deux types cellulaires entrent en contact. Il est donc important de comprendre l'impact des adipocytes sur la progression du mélanome, d'autant plus que des études épidémiologiques montrent que l'obésité est un facteur de mauvais pronostic pour ce cancer. Le surpoids et l'obésité sont en hausse constante avec près d'un tiers de la population mondiale affectée, faisant du lien entre l'obésité et le cancer un enjeu de santé publique majeur. Parmi les différents moyens de communication cellulaire, les vésicules extracellulaires (VE) jouent un rôle important dans le cancer. Les VE régulent la communication entre les cellules cancéreuses mais aussi entre les composants du microenvironnement et la tumeur. Les VE sécrétées par les adipocytes sont peu caractérisées et leur rôle sur la progression tumorale reste à élucider. Les VE adipocytaires pourraient être modifiées qualitativement et quantitativement en obésité car différents stress (inflammation, hypoxie...), connus pour modifier les VE, sont retrouvées dans le tissu adipeux d'individus obèses. Dans ce contexte, le premier objectif de ma thèse était de caractériser les VE adipocytaires et déterminer leur impact sur le mélanome dans un contexte normopondéral et d'obésité. Les résultats obtenus montrent que ces VE favorisent la migration et l'invasion des cellules de mélanome. Une analyse protéomique a révélé une signature spécifique dans ces VE, fortement enrichies en protéines du métabolisme des acides gras (AG).[...] / It is now clear that tumor progression is the result of a permanent dialog between cancer cells and the tumor microenvironment (TME). Among the cells found within the melanoma microenvironment, adipocytes had long been ignored. However, adipocytes are the main component of the hypodermis, the deepest skin layer, and are therefore close to melanoma from tumorigenesis and, as the tumor becomes aggressive and invades the deeper skin layers, the two cell types come into contact. Thus, understanding how adipocytes influence melanoma progression is of major importance, especially since epidemiological studies show that obesity is a poor prognosis factor for melanoma. As overweight and obesity are constantly rising and affect around a third of the World's population, the link between obesity and cancer is a major public health issue. Among the different ways in which cells communicate, extracellular vesicles (EV) play a particularly important role in cancer. Moreover, not only can tumor cells communicate with each other through EV, but the cellular components of the TME also use EV to communicate with cancer cells. Adipocyte-derived EV are poorly characterized and their role in tumor progression remains to be determined. In obesity, adipocyte EV may be qualitatively and quantitatively altered since various stresses (inflammation, hypoxia etc.), which are known to modify EV, are found in the adipose tissue of obese individuals. In this context, the first aim of my thesis was to characterize adipocyte EV and their impact on melanoma in lean and obese individuals. The results obtained show that EV secreted by adipocytes promote migration and invasion of melanoma cells. Analysis of their proteome revealed a protein signature specific to adipocyte EV, which was highly associated with fatty acid (FA) metabolism, a metabolic pathway involved in tumor aggressiveness. In melanoma treated with adipocyte EV, fatty acid oxidation (FAO) is increased and FAO inhibitors reverse their pro-invasive effect. Moreover, adipocytes secrete increased numbers of EV in obesity and, using equal numbers of EV from lean or obese subjects, their effect on tumor aggressiveness is increased and remains dependent on FAO. T[...]

Page generated in 0.0608 seconds