51 |
Adaptive and Opportunistic QoS-based Routing Protocol in VANETs / Protocoles de routage opportunistes et avec qualité de service pour les réseaux véhiculaires VANETsLi, Guang Yu 21 July 2015 (has links)
Les réseaux véhicules (VANET) permettent d’offrir des solutions efficaces et rentables pour diverses applications telles que celles liées à : la sécurité routière, la gestion du trafic routier et les applications multimédia en utilisant les communications sans fil multi-sauts entre les véhicules communicants. Cependant, la mise en place et le maintien de liens multi-sauts fiables dans les environnements VANET posent de réels défis principalement à cause des changements rapides de topologie et des déconnexions fréquentes des liens, ce qui conduit à l'échec et l'inefficacité des protocoles de routage ad hoc traditionnels. Cette thèse propose une nouvelle famille de protocoles de routage (nommés AQRV, AQRV-1 et AQRV-2) adaptés aux caractéristiques intrinsèques des réseaux VANET. Basés sur l’estimation de la qualité de service en temps réel des segments de route (à savoir la probabilité de connectivité, le taux de perte de paquets et le délai), ces trois protocoles de routage reposent sur la sélection dynamique aux intersections du meilleur prochain segment de route pour un routage de bout-en-bout affichant la meilleure QoS (Quality of Service). Cette propriété de sélection opportuniste confère aux protocoles AQRV une bonne adaptation aux scénarios urbains à grande échelle tout en répondant aux contraintes QoS d'un grand nombre d'applications. Afin d'explorer la meilleure route en termes de QoS, la question du routage est vue comme un problème d'optimisation pour lequel un algorithme basé sur l’approche de colonie de fourmis ACO (Ant Colony Optimization) est employé. Par ailleurs, afin de réduire le temps d’exploration des routes et diminuer la charge du trafic de signalisation sur le réseau, une méthode opportuniste est proposée pour explorer efficacement le réseau et rechercher les meilleurs chemins disponibles en termes de QoS locale et globale. En outre, en exploitant des informations sur le trafic, telles que la densité véhiculaire, la vitesse des véhicules et de la longueur des segments de routes, des modèles théoriques sont élaborés pour estimer la qualité de service en temps réel pour deux scénarios distincts : des segments de routes à 1 et à 2 voies. Ces modèles offrent deux principaux avantages: des estimations précises de la qualité des segments de routes et un gain en charge de trafic de signalisation par rapport à la méthode d'estimation traditionnelle reposant sur l’envoi périodique de paquets de signalisation dédiés. Par ailleurs, le concept de TI (Terminal Intersection) est introduit pour mutualiser les routes entre intersections et éviter un routage basé sur nœuds communicants. Ainsi, les différentes paires de communication partagent les informations les plus à jour sur les meilleures routes, ce qui est bénéfique à la réduction de la charge de signalisation et au délai d’établissement des routes. Enfin, pour réduire davantage le trafic de signalisation et diminuer ainsi la congestion du réseau, la technique de transmission à un saut est améliorée, dans le protocole AQRV-2, grâce au concept d'élection distribuée du relayeur qui permet d’éviter la découverte du voisinage par échanges périodiques de paquets Hello. Les performances des protocoles proposés et la pertinence des modèles mathématiques de QoS dérivés ont été évaluées par des séries de simulations implémentant des scénarios réalistes. Une analyse approfondie a permis de montrer la meilleure performance des protocoles de routage développés en termes de signalisation, de délai et de taux de remise de paquets en comparaison aux protocoles de routage de référence. L’étude a également montré l’effet des différents paramètres protocolaires sur les performances globales. / Vehicular ad hoc networks (VANETs) are able to supply scalable and cost-effective solutions for various applications such as road safety, traffic efficiency and entertainments through multi-hop vehicle-to-vehicle wireless communications. However, developing multi-hop communications in VANET environments is a very challenging problem due to the rapid topology changes and frequent network disconnections, which lead to routing failure or inefficiency in traditional mobile ad hoc routing protocols. This dissertation proposes a novel class of routing protocols (AQRV, AQRV-1 and AQRV-2), which can account for specific characteristics of VANETs. Based on real-time QoS of road segment (namely connectivity probability, packet delivery ratio and delay), these three routing protocols rely on dynamic intersection-based best QoS route selection to cope with the scalability challenge in large-scale urban scenarios and meet varying requirements of a large number of applications. In order to explore the best QoS routing path, we regard the corresponding routing issue as an optimization problem, and propose an ACO-based (Ant Colony Optimization) algorithm to solve it. Besides, to reduce routing exploration time and decrease network overhead, an opportunistic method is proposed to explore the network and search available routing paths in terms of local/global QoS. In addition, by taking benefit from traffic information, such as vehicle density, vehicle speed and road length, we design mathematical models to estimate real-time QoS for 1-lane and 2-lane road scenarios. The main advantages of these models are twofold: provide accurate estimations of road segments’ QoS metrics and decrease the overhead compared with the estimation method by forwarding periodic packets. Furthermore, a TI-based (Terminal Intersection) concept is proposed to make a group of communication pairs share the same back-bone best route, which is beneficial to update latest routing information, decrease overhead and reduce transmission delay. Upon best route identification, data packets forwarding process is initiated including a dynamic road segment selection at intersections based on the updated global QoS, and a simple greedy carry-and-forward scheme to relay data packets between two neighboring intersections. Finally, to further reduce signaling overhead and alleviate network congestion, the one-hop geographical forwarding is improved using a distributed receiver-based election concept and utilized in AQRV-2 routing protocol to avoid periodic Hello packets exchanges. Extensive simulations are implemented to prove the effectiveness of the proposed protocols and the accuracy of the derived mathematical QoS models. A thorough analysis showed the better performance of our routing protocols in terms of overhead, delay and packet delivery ratio compared with reference routing protocols, and investigated the effects of related influencing factors.
|
52 |
Improving Resilience of Communication in Information Dissemination for Time-Critical ApplicationsDeshmukh, Rajvardhan Somraj 02 July 2019 (has links)
Severe weather impacts life and in this dire condition, people rely on communication, to organize relief and stay in touch with their loved ones. In such situations, cellular network infrastructure\footnote{We refer to cellular network infrastructure as infrastructure for the entirety of this document} might be affected due to power outage, link failures, etc. This urges us to look at Ad-hoc mode of communication, to offload major traffic partially or fully from the infrastructure, depending on the status of it.
We look into threefold approach, ranging from the case where the infrastructure is completely unavailable, to where it has been replaced by make shift low capacity mobile cellular base station.
First, we look into communication without infrastructure and timely, dissemination of weather alerts specific to geographical areas. We look into the specific case of floods as they affect significant number of people. Due to the nature of the problem we can utilize the properties of Information Centric Networking (ICN) in this context, namely: i) Flexibility and high failure resistance: Any node in the network that has the information can satisfy the query ii) Robust: Only sensor and car need to communicate iii) Fine grained geo-location specific information dissemination. We analyze how message forwarding using ICN on top of Ad hoc network, approach compares to the one based on infrastructure, that is less resilient in the case of disaster. In addition, we compare the performance of different message forwarding strategies in VANETs (Vehicular Adhoc Networks) using ICN. Our results show that ICN strategy outperforms the infrastructure-based approach as it is 100 times faster for 63\% of total messages delivered.
Then we look into the case where we have the cellular network infrastructure, but it is being pressured due to rapid increase in volume of network traffic (as seen during a major event) or it has been replaced by low capacity mobile tower. In this case we look at offloading as much traffic as possible from the infrastructure to device-to-device communication. However, the host-oriented model of the TCP/IP-based Internet poses challenges to this communication pattern. A scheme that uses an ICN model to fetch content from nearby peers, increases the resiliency of the network in cases of outages and disasters. We collected content popularity statistics from social media to create a content request pattern and evaluate our approach through the simulation of realistic urban scenarios. Additionally, we analyze the scenario of large crowds in sports venues. Our simulation results show that we can offload traffic from the backhaul network by up to 51.7\%, suggesting an advantageous path to support the surge in traffic while keeping complexity and cost for the network operator at manageable levels.
Finally, we look at adaptive bit-rate streaming (ABR) streaming, which has contributed significantly to the reduction of video playout stalling, mainly in highly variable bandwidth conditions. ABR clients continue to suffer from the variation of bit rate qualities over the duration of a streaming session. Similar to stalling, these variations in bit rate quality have a negative impact on the users’ Quality of Experience (QoE). We use a trace from a large-scale CDN to show that such quality changes occur in a significant amount of streaming sessions and investigate an ABR video segment retransmission approach to reduce the number of such quality changes. As the new HTTP/2 standard is becoming increasingly popular, we also see an increase in the usage of HTTP/2 as an alternative protocol for the transmission of web traffic including video streaming. Using various network conditions, we conduct a systematic comparison of existing transport layer approaches for HTTP/2 that is best suited for ABR segment retransmissions. Since it is well known that both protocols provide a series of improvements over HTTP/1.1, we perform experiments both in controlled environments and over transcontinental links in the Internet and find that these benefits also “trickle up” into the application layer when it comes to ABR video streaming where HTTP/2 retransmissions can significantly improve the average quality bitrate while simultaneously minimizing bit rate variations over the duration of a streaming session. Taking inspiration from the first two approaches, we take into account the resiliency of a multi-path approach and further look at a multi-path and multi-stream approach to ABR streaming and demonstrate that losses on one path have very little impact on the other from the same multi-path connection and this increases throughput and resiliency of communication.
|
53 |
Quantification of User Privacy LossPinnaka, Chaitanya January 2012 (has links)
With the advent of communication age newer, faster and arguably better ways of moving information are at our disposal. People felt the need to stay connected which led to the evolution of smart gadgets like cell phones, tablets and laptops. The next generations of automobiles are keen in extending this connectivity to the vehicle user by arming themselves with radio interfaces. This move will enable the formation of vehicular networks where each car (mobile node) will be an instance of mobile ad hoc networks, popularly referred as Vehicular AdHoc Networks (VANETS). These networks will provide further necessary infrastructure for applications that can help improving safety and efficiency of road traffic as well as provide useful services for the mobile nodes (cars). The specific nature of VANETS brings up the need to address necessary security and privacy issues to be integrated into the social world. Thus, the open field of secure inter-vehicular communication promises an interesting research area. This thesis aims to quantify how much of a user trajectory can an adversary identify while monitoring non-safety applications in VANETS. Different types of adversaries, their attacks and possible non-safety applications are also discussed.
|
54 |
Pseudonymity in VANETS and its implications on the vehicular communication protocol stacksJacob, Jibin January 2012 (has links)
Vehicular Communication (VC) network technology is in the verge of real world deployment. The technology is aimed at achieving high levels of traffic efficiency security and comfort for the users of the traffic system. The technology facilitates exchange of awareness and notification messages among the vehicles to improve the traffic efficiency and safety of the drivers. However, deployment of this awesome technology faces several security and privacy risks. The system is subjected to security risks like replay attacks, nodes sending false information to the system, denial of service attacks by clogging the networks. System also faces several privacy challenges in which sensitive user data can be eavesdropped and also tracing out a particular node using the location data sent by the node. In this research we focused on protecting the privacy of the users using the VC system. Several European projects have been working on privacy enhancement techniques for VC environments. Privacy policy enforcement approach from Privacy Enabled Capability In Co-Operative Systems and Safety Applications (PRECIOSA), pseudonym approach from Secure Vehicular Communication (SeVeCom) and Preparing secure V2X Communication Systems (PRESERVE) project which integrates the results from both PRECIOSA and SeVeCom projects are three of those projects considered in this report. This research is more focused on the pseudonym approach proposed by SeVeCom. We discuss the impact of pseudonym change on the communication stack, what other lower layer identifiers need to be changed along with the pseudonym change, and is there any other ways the attacker can still link the messages from a particular node to hamper the nodes privacy. Finally after analyzing the results from the research, we propose a solution to include a new module in the PRESERVE architecture called Identifier Change Management (IDCM) module to improve the anonymity of the user participating in the vehicular communication.
|
55 |
Towards Efficient Certificate Revocation Status Validation in Vehicular Ad Hoc Networks with Data MiningZhang, Qingwei January 2012 (has links)
Vehicular Ad hoc Networks (VANETs) are emerging as a promising approach to improving traffic safety and providing a wide range of wireless applications for drivers and passengers. To perform reliable and trusted vehicular communications, one prerequisite is to ensure a peer vehicle’s credibility by means of digital certificates validation from messages that are sent out by other vehicles. However, in vehicular communication systems, certificates validation is more time consuming than in traditional networks, due to the fact that each vehicle receives a large number of messages in a short period of time. Another issue that needs to be addressed is the unsuccessful delivery of information between vehicles and other entities on the road as a result of their high mobility rate. For these reasons, we need new solutions to accelerate the process of certificates validation. In this thesis, we propose a certificate revocation status validation scheme using the concept of clustering; based on data mining practices, which can meet the aforementioned requirements. We employ the technique of k -means clustering to boost the efficiency of certificates validation, thereby enhancing the security of a vehicular ad hoc network. Additionally, a comprehensive analysis of the security of the proposed scheme is presented. The analytical results demonstrate that this scheme can effectively improve the validation of certificates and thus secure the vehicular communication in vehicular networks.
|
56 |
CROSS-LAYER DESIGN FOR LOCATION- AND DELAY-AWARE COMMUNICATION IN VEHICULAR NETWORKSJarupan, Boangoat 25 July 2011 (has links)
No description available.
|
57 |
VANET Broadcast Protocol: A Multi-Hop Routing Framework for Vehicular Networks in ns-3Bjorndahl, William M. 01 January 2022 (has links)
Vehicles are more frequently being built with hardware that supports wireless communica- tion capabilities. Dedicated short-range communications (DSRC) is a standard that enables the hardware on vehicles to communicate with one another directly rather than through external infrastructure such as a cellular tower. With DSRC supporting small-range communications, multi-hop routing is utilized when a packet needs to reach a long-range destination. A vehicular ad-hoc network (VANET) broadcast protocol (VBP) was developed. This thesis introduces VBP, an open-source framework for simulating multi-hop routing on mobile and wireless vehicular networks. VBP is built for the routing layer of the network simulation tool called network simulator 3 (ns-3) and contains a custom protocol that adapts to various traffic conditions on a roadway. To test VBP we ran six simulations across three traffic levels. Results confirm that VBP successfully routes packets or queues packets when a first or next hop is not available. The development process of VBP is documented to help researchers who are trying to create a custom routing protocol for ns-3.
|
58 |
Scheduling in Green Vehicular Infrastructure with Multiple Roadside UnitsKhezrian, Amir M. 10 1900 (has links)
<p>In this thesis we consider low complexity downlink traffic scheduling for green vehicular roadside infrastructure. In multiple roadside unit (RSU) deployments, the energy provisioning of the RSUs may differ, and it is therefore desirable to balance RSU usage from a normalized energy viewpoint. We consider both splittable and unsplittable RSU assignment scheduling (SRA and URA). We first derive an offline integer linear programming bound for the normalized min-max RSU energy usage, which can be solved for a given input sample function. We then show that in the SRA case there is a polynomial complexity 2-approximation bound for the normalized min-max energy schedule. These bounds are used for comparisons with several proposed online scheduling algorithms. The first scheduler is a low complexity Greedy Online Algorithm (GOA) that makes greedy RSU selections followed by minimum energy time slot assignments. A normalized min-max online algorithm is then proposed (TOAA) which is an online version of the 2-approximation bound for SRA scheduling. Then, the Greedy Flow Graph Algorithm (GFGA), which makes greedy RSU selections followed by time slots reassignment whenever a new vehicle is assigned to the same RSU. This is done using a locally optimum integer linear program that can be efficiently solved using a minimum cost flow graph. Two low complexity algorithms are then introduced based on a potential function scheduling approach. The One-Objective algorithm, uses a primary objective based on normalized min-max energy. The second, the Bi-Objective algorithm, uses the same primary objective combined with a total energy secondary objective. These algorithms have provable performance guarantees, in that their worse-case competitive ratio performance is upper bounded. Results from a variety of experiments show that the proposed scheduling algorithms perform well. In particular, we find that in the SRA case, the TOAA and GFGA algorithms perform very close to the lower bound, but at the expense of having to reassign time slots whenever a new vehicle arrives. In the URA case, our low complexity One-Objective algorithm performs better than the others over a wide range of traffic conditions.</p> / Master of Applied Science (MASc)
|
59 |
Adaptive solutions for data sharing in vehicular networks / Solutions adaptatives pour le partage de données dans les réseaux de véhiculesPimenta de Moraes Junior, Hermes 04 May 2018 (has links)
Dans le cadre des systèmes de transport intelligents (STI), les véhicules peuvent avoir beaucoup de capteurs (caméras, lidars, radars, etc.) et d’applications (évitement des collisions, surveillance du trafic, etc.) générant des données. Ils représentent alors une source d’information importante. Les applications locales peuvent augmenter considérablement leur efficacité en partageant une telle information au sein du réseau. La précision des données, la confiance et la pertinence peuvent être vérifiées lors de la réception de données provenant d’autres nœuds. Par conséquent, nous croyons qu’une question importante à répondre dans ce contexte est: “Comment partager efficacement les données dans un tel environnement?” Le partage de données est une tâche complexe dans les réseaux dynamiques. De nombreuses problèmes telles que les connexions intermittentes, la variation de la densité du réseau et la congestion du médium de communication se posent. Une approche habituelle pour gérer ces problèmes est basée sur des processus périodiques. En effet, un message envoyé plusieurs fois peut atteindre sa destination même avec des connexions intermittentes et des réseaux à faible densité. Néanmoins, dans les réseaux à haute densité, ils peuvent entraîner une congestion du médium de communication. Dans cette thèse, nous abordons le problème du partage de données dans des réseaux dynamiques en nous appuyant sur des horizons de pertinence. Un horizon est défini comme une zone dans laquelle une information devrait être reçue. Nous commençons par nous concentrer sur le partage de données au sein des voisins directs (à 1 saut de distance). Ensuite, nous proposons une solution pour construire une carte des voisins, centrée sur le nœud ego, dans un horizon à n sauts. Enfin, nous relâchons la définition de l’horizon pour la définir de façon dynamique, où différents éléments de données peuvent atteindre des distances différentes (sauts). En ce qui concerne la solution pour les horizons à 1 saut, notre technique adaptative prend en compte la dynamique des nœuds et la charge du réseau. Afin d’assurer une diffusion efficace des données dans différents scénarios, la fréquence d’envoi des messages est définie en fonction des mouvements des véhicules et d’une estimation du taux de perte du réseau. Après, nous nous concentrons sur la carte des voisins jusqu’à n sauts de distance. Comme la communication avec des nœuds éloignés apporte des problèmes supplémentaires (actions de transfert, retards plus importants, informations périmées), une évaluation de confiance des nœuds identifiés et une estimation de fiabilité du chemin vers chaque voisin sont ajoutées à la carte. Au lieu d’exécuter des processus de diffusion séparés, notre troisième contribution porte sur une stratégie de coopération dont l’objectif principal est de diffuser des données tout en satisfaisant la plupart des nœuds. À cette fin, une trame unique est transmise de nœud en nœud. Sa charge utile est mise à jour localement afin qu’elle contienne les éléments de données les plus pertinents en fonction de certains critères (par exemple, urgence, pertinence). Une telle stratégie définit ainsi un horizon centré sur les données. Nous validons nos propositions au moyen d’émulations de réseaux réalistes. De toutes nos études et des résultats obtenus, nous pouvons affirmer que notre approche apporte des perspectives intéressantes pour le partage de données dans des réseaux dynamiques comme les VANET. / In the context of Intelligent Transportation Systems - ITS, vehicles may have a lot of sensors (e.g. cameras, lidars, radars) and applications (collision avoidance, traffic monitoring, etc.) generating data. They represent then an important source of information. Local applications can significantly increase their effectiveness by sharing such an information within the network. Data accuracy, confidence and pertinence can be verified when receiving data from other nodes. Therefore, we believe that an important question to answer in this context is: “How to efficiently share data within such an environment?” Data sharing is a complex task in dynamic networks. Many concerns like intermittent connections, network density variation and communication spectrum congestion arise. A usual approach to handle these problems is based on periodic processes. Indeed, a message sent many times can reach its destination even with intermittent connections and low density networks. Nevertheless, within high density networks, they may lead to communication spectrum scarcity. In this thesis we address the problem of data sharing in dynamic networks by relying in so-called horizons of pertinence. A horizon is defined as an area within which an information is expected to be received. We start focusing on data sharing within direct neighbors (at 1-hop of distance). Then we propose a solution to construct a map of neighbors, centered in the ego-node, within a horizon of n-hops. Finally, we relax the horizon definition to a dynamic defined one where different data items may reach different distances (hops). Regarding the solution for 1-hop horizons, our adaptive technique takes into account nodes’ dynamics and network load. In order to ensure an effective data dissemination in different scenarios, the sending messages frequency is defined according to vehicles movements and an estimation of the network loss rate. Following, we focus on the map of neighbors up to n-hops of distance. As communicationwith distant nodes brings additional concerns (forwarding actions, larger delays, out-of-date information), a trust evaluation of identified nodes and a reliability estimation of the multi-hop path to each neighbor is added to the map. Instead of running separated disseminating processes, our third contribution deals with a cooperative strategy with the main goal of disseminating data while satisfying most of the nodes. For this purpose a unique frame is forwarded from node to node. Its payload is locally updated so that it contains the most relevant data items according to some criteria (e.g. urgency, relevance). Such a strategy defines thus a data-centered horizon. We validate our proposals by means of realistic network emulations. From all our studies and achieved results we can state that our approach brings interesting insights for data sharing in dynamic networks like VANETs.
|
60 |
Etude des interactions réseaux véhiculaires et Cloud / Study of VANETs and Cloud interactionsWilhelm, Geoffrey 06 December 2018 (has links)
Les réseaux véhiculaires sont des réseaux émergents qui permettent de connecter des véhicules entre eux et avec les infrastructures routières. Ils permettent de mettre en œuvre des applications de sécurité (évitement des collisions, prévention des travaux, etc.), des applications temps-réel (aide à la conduite automatisée), des applications des systèmes de transport intelligents (gestion du trafic, proposition de détours, etc.), des applications de confort (péage automatique des autoroutes, connexion à du contenu multimédia en ligne, etc.). Pour fonctionner pleinement, le véhicule a besoin d’une puissance de calcul de plus en plus grande et d’une connexion quasi-continue. Afin de garantir cette contrainte, les réseaux véhiculaires font de plus en plus appel au Cloud. Cette thèse vise à explorer les différentes interactions entre les réseaux véhiculaire et Cloud. / Vehicular Ad-hoc Networks (VANETs) are a new kind of networks which allow to connect vehicles between them and with the road infrastructures. It make possible to deploy safety applications (colision avoidance, roadworks advertisement, etc.), real time application (driver assistance, automated driving, etc.), comfort application (automatic toll payment, access to multimedia contents via internet, etc.). In order to be functioning completely, the vehicle needs more and more computing power and a connection with almost no interruption. To guarantee this constraints, VANETs are using more and more often the Cloud Computing. This thesis aims to explore the differents intereactions between VANETs and the Cloud
|
Page generated in 0.0327 seconds