• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Cost Shared Quantization Algorithm and its Implementation for Multi-Standard Video CODECS

2012 December 1900 (has links)
The current trend of digital convergence creates the need for the video encoder and decoder system, known as codec in short, that should support multiple video standards on a single platform. In a modern video codec, quantization is a key unit used for video compression. In this thesis, a generalized quantization algorithm and hardware implementation is presented to compute quantized coefficient for six different video codecs including the new developing codec High Efficiency Video Coding (HEVC). HEVC, successor to H.264/MPEG-4 AVC, aims to substantially improve coding efficiency compared to AVC High Profile. The thesis presents a high performance circuit shared architecture that can perform the quantization operation for HEVC, H.264/AVC, AVS, VC-1, MPEG- 2/4 and Motion JPEG (MJPEG). Since HEVC is still in drafting stage, the architecture was designed in such a way that any final changes can be accommodated into the design. The proposed quantizer architecture is completely division free as the division operation is replaced by multiplication, shift and addition operations. The design was implemented on FPGA and later synthesized in CMOS 0.18 μm technology. The results show that the proposed design satisfies the requirement of all codecs with a maximum decoding capability of 60 fps at 187.3 MHz for Xilinx Virtex4 LX60 FPGA of a 1080p HD video. The scheme is also suitable for low-cost implementation in modern multi-codec systems.
2

Implementation of a Low Cost Reconfigurable Transform Architecture for Multiple Video Codecs

2012 June 1900 (has links)
Currently different types of transform techniques are used by different video codecs to achieve data compression during video frame transmission. Among them, Discrete Cosine Transform (DCT) is supported by most of modern video standards. The integer DCT (Int-DCT) is an integer approximation of DCT. It can be implemented exclusively with integer arithmetic. Int-DCT proves to be highly advantageous in cost and speed for hardware implementations. In particular, the 4x4 and 8x8 block size Int-DCTs have the increased applicability at the current multimedia industry because of their simpler implementation and better de-correlation performance for high definition (HD) video signals. In this thesis, we present a fast and cost-shared reconfigurable architecture to compute variable block size Int-DCT for four modern video codecs – AVS, H.264/AVC, VC-1 and HEVC (under development). Based on the symmetric structure of the transform matrices and the similarity in matrix operations, we have developed a generalized “decompose and share” algorithm to compute the 4x4 and 8x8 block size Int-DCT. The algorithm is later applied to those four video codecs. Our shared hardware approach ensures the maximum circuit reuse during the computation. The entire architecture is multiplier free and designed with only adders and shifters to minimize hardware cost and improve working frequency. Finally, the design is implemented on a FPGA and later synthesized in CMOS 0.18um technology to compare the cost and performance with existing designs. The results show significant reduction in hardware cost and meet the requirements of real time video coding applications.

Page generated in 0.0148 seconds