• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 514
  • 361
  • 83
  • 44
  • 27
  • 16
  • 13
  • 13
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1210
  • 236
  • 216
  • 205
  • 188
  • 184
  • 132
  • 130
  • 125
  • 121
  • 105
  • 96
  • 80
  • 69
  • 63
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Formation of stigmasta-3,5-diene and its analysis in refined olive oil

Firman, Christopher January 1999 (has links)
No description available.
12

Influence of the root-knot nematode, Meloidogyne incognita, on the growth of gourds

Nugaliyadda, Mangalika January 1991 (has links)
No description available.
13

Density trials with systematic designs on intercropped carrots and onions

Dolman, G. January 1985 (has links)
No description available.
14

A study of the effects of protein-based fertilizers on the growth and development of vegetable crops

Smith, S. R. January 1988 (has links)
No description available.
15

Studies on the characterisation and bionomics of 'Nacobbus aberrans' (Thorne, 1935), Thorne & Allen, 1944 (Nematoda: Pratlenchidae)

Manzanilla-López, Rosa Helena January 1997 (has links)
No description available.
16

The in vitro manipulation of cauliflower (Brassica oleracea L. convar. botrytis (L.) Alef. var. botrytis L.) meristematic tissues for utilisation in genetic improvement programmes

Kieffer, Martin Louis January 1996 (has links)
Cauliflower curd meristem activity (organogenic, plastochronic, phyllotactic) was analysed biometrically and confirmed that the curd is the product of a constant process of meristem production and branch ramification with little if any dominance between branch apices. A growth model based on curd branching pattern was developed and its mathematical expression enabled the estimation of the number of meristems carried by a curd at maturity to be over ten million which was previously widely underestimated. Analysis of the response to the in vitro culture of this meristematic tissues revealed that meristems are not predetermined to produce flower and that their shoot regeneration capacity is under several levels of control, the most important being explant physical property (size) and the culture system (nutrient supply). Optimisation of these parameters enabled the development of a low cost, semi-automated protocol for mass production of cauliflower propagules at an unprecedented scale with over 10000 propagules produced per curd. Micropropagules a few millimetres in length were produced, encapsulated in calcium alginate hydrogel, stored at 4°C for several months and used as an 'artificial seed' system of cauliflower propagation. The response to the procedure of micropropagule production is genotype-dependent with summer heading varieties being less reactive than winter heading varieties, this phenomenon was also associated with plasmalemma instability at the cellular (protoplast) level. Furthermore, this material was successfully cryopreserved in liquid nitrogen using a dehydration / vitrification method. The micropropagation protocol is of great interest when used as a regeneration system for experiments involving genetic manipulation such as genetic transformation. A preliminary study of genetic transformation by microprojectile bombardment, using the gus reporter gene, allowed transient expression in curd meristematic tissue. The fundamental and industrial implications for cauliflower breeding of the different protocols developed in this thesis are discussed.
17

Study of factors influcencing the quality and yield of biodiesel produced by transesterification of vegetable oils

Ares Gondra, Zaloa January 2009 (has links)
<p>Biofuels are a developing kind of fuel whose origin is biomass. Among them, many different kind of fuels can be found: bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. This thesis work is focused on the production of biodiesel, which can be used in diesel engines as a substitute for mineral diesel. Biodiesel is obtained from different kinds of oils, both from vegetable and animal sources. However, vegetable oils are preferred because they tend to be liquid at room temperature.</p><p>The process to obtain biodiesel implies first a reaction between the oil and an alcohol, using a catalyst and then a sedimentation, where the biodiesel and the glycerol, the two products that are obtained, can be separated because of their difference in density. After the separation, raw biodiesel is obtained and a treatment with either water bubbling or dry cleaning products is needed to obtain the product which will be ready to use.</p><p>Many methods are available for the production of biodiesel, most of them require heat for the transesterification reaction, which converts the oil into biodiesel. Apart from that, in many cases biodiesel is produced by big companies or by individuals but using complicated and expensive installations.</p><p>This work is an attempt to develop a way of producing biodiesel without any use of external heat, using a simple procedure which could be used by people with a low knowledge of chemistry or chemical processes. It also seeks to set an example on how biodiesel can be easily made by oneself without the use of any industrial systems, with a low budget and limited need of supervision over the process.</p><p>In order to achieve that, many trials were undertaken, introducing changes in the different parameters that are responsible for the changes in the final product. Among them, changes in the amount and type of catalyst, the way the catalyst is added, the type of oil used, the time of reaction and the temperature were made. Apart from that, different types of cleaning were tried, starting by water cleaning and then using powder type products, Magnesol, D-Sol and Aerogel. A centrifuge was also tried to test its utility when separating impurities from liquids or different liquid phases. The results of the different trials were analysed using various tests, the most important being the 3:27 test, the solubility test, the soap titration and pH measurements.</p><p>To sum up, it could be said that the investigation was a success, since it was proved that biodiesel can be made without the use of any external heat with both alkali and acid catalysts, as well as with different ways of adding the catalyst. As for the cleaning, good results were obtained with both dry products and water cleaning, since the soap content of the biodiesel was reduced in both cases. Apart from that, the centrifuge proved to be valid to eliminate impurities from raw oil.</p>
18

Study of factors influcencing the quality and yield of biodiesel produced by transesterification of vegetable oils

Ares Gondra, Zaloa January 2009 (has links)
Biofuels are a developing kind of fuel whose origin is biomass. Among them, many different kind of fuels can be found: bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. This thesis work is focused on the production of biodiesel, which can be used in diesel engines as a substitute for mineral diesel. Biodiesel is obtained from different kinds of oils, both from vegetable and animal sources. However, vegetable oils are preferred because they tend to be liquid at room temperature. The process to obtain biodiesel implies first a reaction between the oil and an alcohol, using a catalyst and then a sedimentation, where the biodiesel and the glycerol, the two products that are obtained, can be separated because of their difference in density. After the separation, raw biodiesel is obtained and a treatment with either water bubbling or dry cleaning products is needed to obtain the product which will be ready to use. Many methods are available for the production of biodiesel, most of them require heat for the transesterification reaction, which converts the oil into biodiesel. Apart from that, in many cases biodiesel is produced by big companies or by individuals but using complicated and expensive installations. This work is an attempt to develop a way of producing biodiesel without any use of external heat, using a simple procedure which could be used by people with a low knowledge of chemistry or chemical processes. It also seeks to set an example on how biodiesel can be easily made by oneself without the use of any industrial systems, with a low budget and limited need of supervision over the process. In order to achieve that, many trials were undertaken, introducing changes in the different parameters that are responsible for the changes in the final product. Among them, changes in the amount and type of catalyst, the way the catalyst is added, the type of oil used, the time of reaction and the temperature were made. Apart from that, different types of cleaning were tried, starting by water cleaning and then using powder type products, Magnesol, D-Sol and Aerogel. A centrifuge was also tried to test its utility when separating impurities from liquids or different liquid phases. The results of the different trials were analysed using various tests, the most important being the 3:27 test, the solubility test, the soap titration and pH measurements. To sum up, it could be said that the investigation was a success, since it was proved that biodiesel can be made without the use of any external heat with both alkali and acid catalysts, as well as with different ways of adding the catalyst. As for the cleaning, good results were obtained with both dry products and water cleaning, since the soap content of the biodiesel was reduced in both cases. Apart from that, the centrifuge proved to be valid to eliminate impurities from raw oil.
19

Biology and Management of Downy Mildew of Lettuce

Matheron, Michael E. 09 1900 (has links)
3 pp. / This publication describes the factors affecting development of downy mildew of lettuce and provides disease management strategies.
20

War Gardens for Company Employees and Cities

Sandige, J. R. 01 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.

Page generated in 0.0233 seconds