• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 885
  • 219
  • 123
  • 118
  • 118
  • 43
  • 31
  • 31
  • 18
  • 13
  • 9
  • 7
  • 5
  • 4
  • 4
  • Tagged with
  • 1983
  • 313
  • 241
  • 159
  • 146
  • 133
  • 121
  • 113
  • 107
  • 99
  • 97
  • 97
  • 92
  • 89
  • 89
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Constraints on shear velocity in the cratonic upper mantle from Rayleigh wave phase velocity

Hirsch, Aaron C. 12 March 2016 (has links)
The standard model of the thermal and chemical structure of cratons has been scrutinized in recent years as additional data have been collected. Recent seismological and petrological studies indicate that the notion of cratonic lithosphere as a thick thermal boundary layer with a very depleted and dehydrated composition may be too simplistic and does not fully explain all aspects of the seismological and petrological observations. We hypothesized that the cratonic lithosphere may be more complicated and designed an experiment to investigate its thermal, chemical, and mineralogical properties using a global database of fundamental mode Rayleigh surface waves. To test this hypothesis, the phase velocities of Rayleigh wave that travel paths primarily over cratons were selected. A 1-D global craton phase velocity profile was generated from these observations and compared to predicted phase-velocity curves using two different forward modeling techniques. With the first approach, profiles of shear velocity were generated based on educated guesses of upper mantle temperatures using geotherms. With the second approach, profiles of shear velocity were generated using random permutations about 1-D global model STW105. In total 5,625 geotherm and 80,000 random 1-D forward models were generated for comparison. Each shear velocity model was converted to phase velocity and compared to the observed range of cratonic phase velocities, defined as within one standard deviation of the mean. This method was able to constrain shear velocity in cratons relatively well though the 1-D profiles deviate at depths shallower than 100 km. Shear velocity is faster than PREM/STW105 to depths greater than 200 km with constantly increasing velocity with depth in the random model and a low velocity layer at 100-150 km.
42

Multiazimuth velocity analysis using velocity-independent seismic imaging

Burnett, William Andrew, 1983- 02 March 2015 (has links)
Multiazimuth seismic data contains information about how the Earth’s seismic response changes with azimuthal direction. Directional-dependence of the seismic response can be caused by anisotropy or heterogeneity, associated with subsurface features such as fractures, stresses, or structure. Characterizing azimuthal variations is done through velocity analysis, which provides a link between an acquired data set and its image, as well as between the image and subsurface geology. At the stage which conventional velocity analysis is applied, it is difficult to distinguish the geologic cause of observed azimuthal velocity variations. The inability to distinguish the similar effects of anisotropy and heterogeneity leads to positioning errors in the final image and velocity estimates. Regardless of the cause, azimuthally variable velocities require at least three parameters to characterize, as opposed to the conventional single-parameter isotropic velocity. The semblance scan is the conventional tool for seismic velocity analysis, but it was designed for the isotropic case. For multiple parameters, the semblance scan becomes computationally impractical. In order to help address the xiissues of geologic ambiguity and computational efficiency, I develop three methods for multiazimuth seismic velocity analysis based on “velocity-independent” imaging techniques. I call this approach, velocity analysis by velocity-independent imaging, where I reverse the conventional order of velocity estimation followed by image estimation. All three methods measure time-domain effective-velocity parameters. The first method, 3D azimuthally anisotropic velocity-independent NMO, replaces the explicit measurement of velocity with local slope detection. The second method, time-warping, uses local slope information to predict traveltime surfaces without any moveout assumption beforehand, and then fit them with a multiparameter velocity model. The third method, azimuthal velocity continuation, uses diffraction image focusing as a velocity analysis criterion, thereby performing imaging and velocity analysis simultaneously. The first two methods are superior to the semblance scan in terms of computational efficiency and their ability to handle multi-parameter models. The third method is similar to a single multi-parameter semblance scan in computational cost, but it helps handle the ambiguity between structural heterogeneity and anisotropy, which leads to better positioned images and velocity estimates. / text
43

Experimental investigation of pore scale velocity within micro porous media

Sen, Debjyoti Unknown Date
No description available.
44

Měření rychlostního pole v proudu vzduchu z velkoplošné vyústky / Measurement of the velocity distribution in a low-velocity outlet jet

Uhlář, Václav January 2008 (has links)
Diploma thesis deal with measuring air-jet generated by low-velocity outlet. Diploma thesis piles of several part. First part includes velocity measurment (flow volumes) single ventilators. Follows measuring velocity distribution in air-jet generated by low-velocity outlet, his vizualization by the smoke method. Last point is problems errors and uncertainties measuring. Thesis likewise includes appendices, where there are mentioned tables from single maesuring and setting frequency transducers.
45

Spin waves and supercritical motion in superfluid ³He

Laine, S. (Sami) 14 June 2019 (has links)
Abstract Helium is the second most abundant element in the Universe. It is the only known substance that can exist in liquid state at absolute zero. There are two stable isotopes of helium, fermionic ³He and bosonic ⁴He. At sufficiently low temperatures, both isotopes undergo a phase transition into a superfluid state. These superfluids are usually characterised by their ability to flow without resistance, but this is by no means their only remarkable property. In this thesis, we study theoretically superfluid ³He. The work consists of two separate projects. First, we study the effect of a quantised vortex line to spin dynamics of the superfluid. We find that the interplay between the vortex and the magnetisation of the liquid generates spin waves, dissipating energy. We find that the theoretically predicted energy dissipation is in agreement with experimental data, implying that spin-wave radiation can be an important mechanism of magnetic relaxation in superfluid ³He. Second, we study the drag force acting on an object moving through zero-temperature superfluid at a constant velocity. The drag arises if momentum is transferred from the object to the fluid. At low velocities, no such mechanism exist and thus the drag vanishes. If the velocity exceeds the Landau velocity \(v_L\), it becomes possible for the object to create quasiparticle excitations that could, in principle, transfer momentum away from the object. Thus, \(v_L\) has been generally assumed to be the critical velocity, that is, the velocity above which the drag force starts to increase rapidly towards the normal-state value. We find that this is not necessarily the case. Objects much larger than the superfluid coherence length modify the superfluid flow field around them. The spatial variation of the flow field can shield the object, preventing quasiparticles from transferring momentum away from the object. This leads to a critical velocity greater than \(v_L\). / Original papers The original publications are not included in the electronic version of the dissertation. Laine, S. M., & Thuneberg, E. V. (2016). Calculation of Leggett–Takagi Relaxation in Vortices of Superfluid ³He-B. Journal of Low Temperature Physics, 183(3–4), 222–229. https://doi.org/10.1007/s10909-016-1516-x Kuorelahti, J. A., Laine, S. M., & Thuneberg, E. V. (2018). Models for supercritical motion in a superfluid Fermi liquid. Physical Review B, 98(14). https://doi.org/10.1103/physrevb.98.144512 http://jultika.oulu.fi/Record/nbnfi-fe2018112148794 Laine, S. M., & Thuneberg, E. V. (2018). Spin-wave radiation from vortices in ³He−B. Physical Review B, 98(17). https://doi.org/10.1103/PhysRevB.98.174516 http://jultika.oulu.fi/Record/nbnfi-fe2019092630083
46

Local Earthquake Tomography at Mt. Pinatubo, Philippines

Beale, Jacob N. 26 August 2004 (has links)
A new high-resolution 3-dimensional P-wave velocity model for Mt. Pinatubo volcano was developed by tomographic inversion of P-wave arrivals from 3,007 earthquakes recorded during a four month period from May to August, 1991. The arrivals were recorded by a network of seismic stations, consisting of seven pre-eruption stations and seven post-eruption stations. Two stations survived the June eruptions. First-arrival travel times were calculated using a finite-difference solution to the eikonal equation. An iterative, linearized approximation of the nonlinear tomography problem was used to solve separately for both velocity structure and hypocenter locations. Several inversions performed with different initial parameters and convergence schemes, and synthetic checkerboard reconstructions indicate a horizontal spatial resolution of velocity perturbations near 4 km. However, the network sparseness allows for a substantial trade-off between focal depth, origin time, and the vertical velocity profile. Many hypocenter clusters collapse from diffuse clouds into tighter features after 3-D relocation. These bands of earthquakes appear to represent fault-related structures. Three low-velocity (relative to the horizontal average) anomalies exist within the well-resolved portion of the velocity model. These anomalies are spatially associated with pre- and post-eruption earthquakes oriented along mapped surface fault zones. Similar anomalies observed at different volcanoes have been previously interpreted as magma related. The low-velocity anomalies at Pinatubo are interpreted as highly fractured, hot volumes of mostly competent rock, which may contain partial melt. / Master of Science
47

In Situ Compressional Wave Velocity Across An Exposed Brittle Fault Zone

Sayed, Ali Yawar 06 August 2001 (has links)
The effects of lithology, fracturing, and gouge zone mineralization on the geophysical properties of fault zones are not very well understood. In situ seismic data collected over the exhumed San Gregorio Fault at Moss Beach, CA were used to relate in situ compressional wave velocity to internal fault zone properties. This active strike-slip fault is exposed in cross section on an uplifting and actively eroding wave-cut platform. It cuts shallow marine sediments that have been buried to depths of a few kilometers. The unweathered exposure containing seawater makes it a unique analog of subsurface faults. Previous structural analysis over this exposure observed damage caused by faulting over a ~100 m wide zone in cross-section. The fault zone is centered at a 10-17 m wide clay-rich fault core flanked by a ~30 m wide brecciated gouge zone. These gouge zones are bordered on either side by 30-40 m wide fractured zones. Resolving to a scale of a few meters, the seismic survey produced a continuous P-wave velocity profile analogous to a horizontal well log across the fault. Lateral variations in the velocity profile correlate exactly to previously mapped fault zone structure. The clay core and adjacent brecciated gouge create a ~50 m wide very low velocity zone, 25-50% slower than the surrounding host rock. Fractured bedrock on either side of the core causes a wider zone of 5-10% slow velocity, for a total fault signature ~100 m wide. Fault parallel fracture anisotropy was observed in the fractured zones, but surprizingly anisotropy was not observed in the strongly foliated gouge zones. The field measurements differ significantly from laboratory measurements at zero pressure and in some cases from expected values for saturated rock of this porosity, perhaps due to biased rock sampling, the long wavelength effects of macrofractures, frequency dispersion, and partial saturation. The velocity profile is similar in width and consistent in velocity contrast to low S-wave velocity zones derived from fault zone guided waves in other strike-slip faults. The traveltime delay across the fault zone is not large enough to cause the 2-3 km wide crustal low velocity zones modeled by refraction studies. Synthetic reflection seismograms in the typical frequency range show that the fault zone acts as a thick bed or as a constructively interfering thin bed. The models suggest that very large reflection coefficients observed across accretionary prism faults can be explained by fracturing, brecciation and clay content without elevated pore pressures. Comparison with a refraction study across the Punchbowl Fault shows a similar structural zonation of these two well-studied examples of brittle fault zones. This suggests that high-resolution seismic velocity models can be used to directly interpret internal deformation structure of brittle faults. / Master of Science
48

A novel ultrasonic spectrometer with automatic control and geometrical alignment for the study of liquids

Al-Rasheedi, Majed A. F. January 1997 (has links)
No description available.
49

Modelling of installation effects on transit time ultrasonic flow meters in circular pipes

Moore, Pamela I. January 2001 (has links)
No description available.
50

Spray diagnostics by laser diffraction

Jing, Cao January 1989 (has links)
No description available.

Page generated in 0.0273 seconds