• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Continuous Stochastic Cellular Automata that Have a Stationary Distribution and No Detailed Balance

Poggio, Tomaso, Girosi, Federico 01 December 1990 (has links)
Marroquin and Ramirez (1990) have recently discovered a class of discrete stochastic cellular automata with Gibbsian invariant measures that have a non-reversible dynamic behavior. Practical applications include more powerful algorithms than the Metropolis algorithm to compute MRF models. In this paper we describe a large class of stochastic dynamical systems that has a Gibbs asymptotic distribution but does not satisfy reversibility. We characterize sufficient properties of a sub-class of stochastic differential equations in terms of the associated Fokker-Planck equation for the existence of an asymptotic probability distribution in the system of coordinates which is given. Practical implications include VLSI analog circuits to compute coupled MRF models.

Page generated in 0.0693 seconds