• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evacuation Timing Computations Using Different Evacuation Models

Tan, Yong Kiang January 2011 (has links)
In New Zealand, a new method of specific design, Verification Method 2 (C/VM2) has been proposed to be used for fire safety compliance. Previous researchers have investigated different fire parameters and their applications. However, there is a lack of research effort in evacuation calculations and in this research the author uses three different types of evacuation software to calculate the evacuation timings for four different buildings. These buildings include a cinema complex, a four-storey office building, a two-storey restaurant and a sport and recreation complex. Furthermore, this work conducts evacuation analyses to test the applicability of these evacuation tools. Simulex, FDS+Evac and EvacuatioNZ are the evacuation software used and the simulation results are compared with the hydraulic model recommended by C/VM2. Through careful analyses of the escape routes, the hydraulic model can be used to obtain evacuation times in a short timeframe. This calculation can be concise for a simple geometry, but lengthy for complex buildings. However, the hand calculation method has been found to be unsuitable in certain applications, for example buildings with specific seating arrangements, different occupant groups etc. FDS+Evac, in general, generates comparable evacuation times compared to the hydraulic model. As FDS+Evac has a good user interface, one can study the evacuation process easily. However, the computation time for one simulation can be relatively longer than with the other software tools. It was found that this tool is good for complex evacuation situations where a merging or counter-flow situation arises. Simulex, in general, generates faster evacuation times compared to the hydraulic model. Nevertheless, the computation time to complete one run is not too long and the evacuation process can be observed during and after the simulation. Finally, it was discovered that Simulex is not designed for counter-flow evacuation scenarios. EvacuatioNZ generates significantly longer evacuation timings in highly-congested evacuation scenarios, although for single spaces it has comparable results to hydraulic model. Some future work is required before this evacuation tool can be used as a design tool.
2

Evaluating the DBH Verification Method to Complex Buildings Designed According to New Zealand Compliance Documents C/AS1

Han, Yuzhuo January 2011 (has links)
Performance-based fire engineering design is becoming a more common practice for fire safety design of large complex buildings and modifying existing buildings. However, different engineering assumptions and ambiguous acceptance criteria not only lead to inconsistent level of safety, but also cause inefficient Building Consent process and can result in expensive appeals. In August 2006 the New Zealand Department of Building and Housing (DBH) has been developing a Verification Method (C/VM2) for demonstrating compliance with the Fire Safety requirements of the New Zealand Building Code (C Clauses). This research evaluated the proposed C/VM2 on four complex buildings, including Multi-level Night Club, Hospital, Shopping Mall and Retail Warehouse. It has showed that the C/VM2 successfully implements a systematic and less ambiguous guidance for the future performance-based fire safety designs. However, continued analysis and development is necessary that a solely deterministic method may not be the best solution. A risk-based concept is suggested to be incorporated into the new generation of the C/VM2.

Page generated in 0.0148 seconds