1 |
Movement Generator For Mobile Network SimulationAlghamdi, Raid Abdullah 11 January 2012 (has links)
The simulation of mobile networks relies on a reliable movement generation.
Random movement patterns are frequently used in simulators. In this report,
the performance of the popular setdest movement generator, which is built
into the ns2 open source simulator, is investigated using two statistical tests:
quadrat count test and the variance to mean ratio (VMR) test. The results
show a non-uniform distribution of nodes during the simulation with a bias
towards placing the nodes in the center of the simulated area. We propose
and implement a di erent method for random movement generation in the
ns2 simulator and show that our movement generator improves the randomness
of the node distribution during the simulation. The new generator was
successfully tested with the ns2 simulator.
|
2 |
Drug Screening Utilizing the Visual Motor Response of a Zebrafish Model of Retinitis PigmentosaLogan C Ganzen (8803004) 06 May 2020 (has links)
Retinitis Pigmentosa
(RP) is an incurable inherited retinal degeneration affecting approximately 1
in 4,000 individuals globally. The aim of this dissertation was to identify
drugs that can help patients suffering from the disease. To accomplish this
goal, the zebrafish was utilized as a model for RP to perform <i>in vivo</i>
drug screening. The zebrafish RP model expresses a human rhodopsin transgene
which contains a premature stop codon at position 344 (<i>Tg</i>(<i>rho:Hsa.RH1_Q344X</i>)).
This zebrafish model exhibits significant rod photoreceptor degeneration
beginning at 7 days post fertilization (dpf). To assess the visual consequence
of this rod degeneration the zebrafish behavior visual motor response (VMR) was
assayed under scotopic conditions. The Q344X RP model larvae displayed a
deficit in this VMR in response to a scotopic light offset. This deficit in
behavior was utilized to perform a drug screen to identify compounds that could
ameliorate the deficient Q344X VMR. The ENZO SCREEN-WELL® REDOX library was
chosen to be screened since oxidative stress may increase RP progression in a
non-specific manner. From this library, a β-blocker,
carvedilol, was identified as a compound that improved the Q344X VMR behavior.
This drug was also able to increase rod number in the Q344X retina. Carvedilol
was shown to be capable of working directly on rods by demonstrating that the
drug can signal through the adrenergic pathway in the rod-like human Y79 cell
line. Since carvedilol is an FDA-approved drug, this
screening paradigm was utilized to screen the Selleckchem FDA-approved library
to identify more drugs that can potentially be repurposed to treat RP like
carvedilol. Additionally, this scotopic VMR assay was used to demonstrate that
it can identify behavioral deficits in the P23H RP model zebrafish<i> (Tg</i>(<i>rho:Hsa.RH1_P23H</i>)).
This dissertation work provides a potential FDA-approved drug for RP treatment
and sets the foundation for future drug screening to identify more drugs to
treat different forms of RP.
|
Page generated in 0.0204 seconds